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Abstract 
 
 The use of the generalised least square (GLS) technique for estimation of 
hydrological regression models has become good practice in hydrology. Through a 
regression model, a simple link between a particular hydrological variable and a set 
of catchment descriptors can be established. The regression residuals can be treated 
as the sum of sampling errors in the hydrological variable and errors in the regression 
model. This paper presents a recursive method for estimating a parameterised form 
of the cross correlation between the regression model errors, the variance of these 
errors and the regression model parameters. A re-weighted set of regression residuals 
can be defined such that the covariance of these residuals is essentially similar to that 
of the model error. The cross products of the re-weighted regression residuals, 
pooled within bins, can be used to identify a structure and to fit a parameterised form 
for the cross-correlations of the regression errors. The procedure has been tested 
successfully on annual maximum flow data from 602 catchments located throughout 
the UK. 
 
Introduction 
 
 The use of linear regression models figures prominently among methods for 
deriving simple relationships between hydrological variables and a set of lumped 
catchment descriptors such as catchment area, annual average rainfall and soil type. 
This is partly due to regression models being computationally easy to use and being 
much less demanding with regards to data requirements than more detailed 
hydrological models. A well known hydrological variable is the index flood, as 
required by the index flood method for deriving flood frequency relationships 
(Stedinger et al., 1993). 
 The objective of this study is to develop and implement an extended form of 
Generalised Least Squares (GLS) regression in which the regression residuals are 
treated as being the sum of two types of error, a sampling error and a modelling error, 
and where both types of error are spatially correlated. The procedure outlined here 
provides a direct non-parametric estimate of the relation to distance of the cross 
correlation between the regression modelling errors which can be used to identify 
and estimate a parametric form of this function. Overall, the procedure is a recursive 
one which provides estimates of the regression parameters and of the variance and 
correlation of the modelling errors, given that an initial separate analysis provides 
estimates of the variance and correlation of the sampling errors. The method has 
been tested on a dataset consisting of annual maximum instantaneous peak flow 
series from 602 rural catchments located throughout the UK. 
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Model Description 
 

To relate the index flood variable from n different catchments to a set of 
catchment descriptors, consider a vector of sample (log transformed) median annual 
maximum floods, y, where individual sites are denoted with a subscript i. Each 
sample value is described in terms of a population regression model and two 
individual error components representing the sampling, iε , and modelling, iη , errors, 
respectively so that 
 

i
T
iii

T
iiy ωηε +=++= βxβx        (1) 

 
where β  is a vector of regression model parameters and xi is a vector of catchment 
descriptors with a value of one in the first location. The covariance of the sampling 
errors is denoted εΣ , the corresponding covariance of the modelling errors denoted 
ηΣ , and the two errors are assumed mutually independent. Further, it is assumed that 

the elements along the diagonal of the modelling error covariance are identical and 
equal to 2

ησ . In pioneering the use of the GLS procedure in hydrology, Stedinger and 
Tasker (1989) assumed the modelling covariance matrix to be of the form IΣη

2
ησ= , 

i.e. there is an assumption of no cross correlation between the modelling errors. In 
contrast, the model formulated here assumes the cross correlation to be represented 
by the associated modelling error correlation matrix ηR . 
 While estimates of the sampling error covariance can be obtained directly 
from the dataset, the covariance of the modelling errors has to be estimated as part of 
a recursive procedure. From an initial guess of the modelling error covariance, a set 
of regression residuals can be estimated. By re-weighting these residuals, it is 
possible to obtain a set of GLS residuals from which the modelling error variance 
can be estimated. By further re-weighting the GLS residuals, an estimate of the 
modelling error correlation matrix can be obtained. These recursive estimates can 
then be used to estimate a new regression model and a new set of regression residuals. 
This procedure is continued until the modelling error variance 2

ησ  has converged. 
 The first step in the recursive procedure is to define the covariance matrix of 
the vector ω  of total errors as 
 

{ } ( ) GΣRΣΣΣωω εηεηω
T 222

ηηη σσσ =+=+==E .   (2) 

 
To implement the procedure, the expression in Eq. (2) is interpreted as representing 
the covariance of the total error in terms of 2

ησ , being the value to be estimated from 
the present step of the recursive procedure, and of G, a known matrix derived from 
values of 2

ησ  and ηR , which are either initial guesses or the estimates obtained in the 
previous step. In the expressions developed below, Eq. (2) is taken temporarily to be 
valid even though an estimated value of G is used. 
 It can be shown that the individual estimates of the overall residuals, iω̂ , can 
be expressed in terms of the true underlying residuals as 
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Vωω =ˆ , ( ) 111 −−−−= GXXGXXIV TT      (3) 
 
which enables the covariance matrix of the estimated regression residuals to be 
represented as 
 

{ } ( )[ ]TTTE XXGXXGωωΣω
12

ˆ ˆˆ −−== ησ .     (4) 
 
 
GLS residuals 
 
 For Generalised Least Squares analysis, it is common to work with an 
alternative set of sample residuals, the GLS residuals. These residuals, ω~ , can be 
related to the “raw” sample residuals, ω̂ , in the following way.  A matrix-square-
root of the scaled covariance matrix G is first required, and it convenient to work 
with the Cholesky decomposition:  
 

G
T
G UUG =          (5) 

 
where GU  is an upper triangular matrix. The sample GLS residuals are defined as 
 

( )yyUωUω T
G

T
G ˆˆ~ −== −−        (6) 

 
Given the assumption that the value of G being temporarily used is correct, an 
unbiased estimate of 2ησ  is provided by 
 

( ) ∑
=

−−=
N

i
ipN

1

212 ~ˆ ωσ η         (7) 

 
and, given the assumption, this is the minimum variance unbiased estimate for 2ησ . 
The estimated value of 2ησ  can then be carried forward to the next step of the 
recursion.  
 
Re-weighted GLS 
 
To obtain an estimate of the modelling error correlation matrix ηR , a re-weighted 
version of the GLS residuals is constructed: these can also be considered as a re-
weighting of the raw residuals. In parallel with Eq. (5), a Cholesky decomposition of 
the correlation matrix is constructed, so that 
 

η

T
ηη UUR =

.         (8) 
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where, again, ηU  is an upper triangular matrix. In implementing this scheme, the 
matrix ηR used is the estimate available at the start of the particular step of the 
recursion. Then a set of re-weighted GLS residuals, ω

~~ , can be calculated as 
 

( )yyUUωUUωUω T
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T
η

T
G

T
η

T
η ˆˆ~~~ −=== −− .     (9) 

 
The covariance matrix for the re-weighted GLS residuals is given as 
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Thus, the raw residual vector,ω̂ , has been rescaled to form a revised residual vector, 
ω
~~ , which, apart from the use of estimated values to form the re-weighting matrix 
(G), have a correlation matrix close to ηR . 
 
Case study 
 
 To test the recursive GLS procedure, a case study was undertaken which 
involved annual maximum instantaneous peak flow data from 602 rural catchments 
located throughout the UK. Each catchment is associated with 5 different catchment 
descriptors found in a previous study by the Institute of Hydrology (1999) to be 
useful for estimating the median of the annual maximum peak flow through 
regression modelling. A summary of the data is shown in Table 1 where AREA is the 
catchment area in km2, SAAR is the standard average annual rainfall (in mm) for the 
period 1961-1990, FARL is an index of flood attenuation due to reservoirs and lakes 
and both SPRHOST and RESHOST describe the hydrological properties of 
catchment soils. The FARL descriptor can take on values between zero and one and 
SPRHOST values are in the range between 0% and 60%. 
 
Table 1: Data from 602 rural catchment located throughout the UK. 
 Min Mean Max 
Median, m3s-1 0.2 92.7 981.4 
Record length, years 4 33 117 
AREA, km2 1.6 335.1 4587.0 
SAAR, mm 558 1162 2848 
FARL, - 0.645 0.970 1.000 
SPRHOST, % 5.1 37.4 59.9 
RESHOST, - -0.15 0.00 0.19 
 
A further description of the catchment descriptors is provided by the Institute of 
Hydrology (1999) and Kjeldsen and Jones (2006). The actual regression model 
investigated in this study is based on log-transformed values of AREA, SAAR/1000, 
FARL and SPRHOST/100. In addition, a quadratic term, ln[AREA]2, and non-
transformed values of RESHOST are included. For further background to the 
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variable selection, please refer to the comprehensive study reported by Institute of 
Hydrology (1999). 
 
Sampling Error. Both the diagonal as well as the off-diagonal elements of the 
sampling error covariance are estimated based on consideration of the asymptotic 
variance of the sampling median and are given as 
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where iβ  is the scale parameter of the GLO distribution, standardised to have unit 
median, estimated using the method of L-moments as described by Institute of 
Hydrology (1999). Here ijn denotes the number of years for which catchments i and j 
both have data, while in and jn  denote the total numbers of years of data for the two 
catchments separately. Note that there is a minor conflict between conventional 
notations used for the GLO distribution and for regression analysis in the use of 
“beta” with two distinct meanings. In addition, estimation of the off-diagonal 
elements requires estimates of the correlation coefficient between the log 
transformed median annual maximum flood for each pair of sites, ji yyρ . 
 A bootstrap experiment was carried out similar to the experiments used by 
Kjeldsen and Jones (2006) for investigating the cross-correlation between L-moment 
ratios. Bootstrapping is a technique where new samples are created from an original 
sample by randomly selecting (with replacement) observations from the original 
sample. Considering the annual maximum series of peak flow from the 602 rural 
catchments, a total of 11062 pairs of gauges with a minimum of 40 years of 
overlapping record were available. To investigate the cross-correlation between the 
log-median annual maximum peak flow and relate it to geographical distance 
between catchment centroids, each of these pairs were analysed in turn. For each 
station pair, a new bootstrap sample was created for each station by randomly (with 
replacement) selecting years in the overlapping record. From each selected year the 
joint pair of observations was transferred to the joint bootstrap sample, thereby 
preserving the cross-correlation between the annual maximum series of the two sites. 
The selection is continued until the new bootstrap sample has a record length equal 
to the length of the overlapping record in the original sample. From the joint 
bootstrap sample, the medians of the log transformed annual maximum peak flows 
are estimated for both sites and recorded. By creating 1000 new bootstrap samples 
for each station pair, the correlation between the medians can be estimated and 
linked to the distance between catchment centroids as 
 

( ) ( ) ( )ijijyy dd
ji 21 exp1exp φθφθρ −−+−=      (12) 

 
where ijd  is the distance (km2) between centroids of catchments i and j. The three 
parameters θ , 1φ  and 2φ  are estimated using a least-squares technique. The outcome 
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of the bootstrapping experiment is shown in Figure 1, together with the correlation 
function that has been fitted. 
 

 
Figure 1: Correlation between sampling errors of log-transformed median 

annual maximum flood as a function of distance between catchment centroids. 
 
As the estimator of the at-site sampling variability of y in Eq. (11) involves an 
estimate of the median of the annual maximum peak flow itself, it was considered 
appropriate to replace the direct estimates of the GLO parameter β  in Eq. (11) with 
corresponding estimates derived using an ordinary least squares (OLS) regression 
model linking [ ]iβln  to a set of catchment descriptors as 
 

[ ] [ ] i

P

p

pipi x γθθβ ++= ∑
=1

,0 lnln       (13) 

 
where P is the total number of catchment descriptors used in the regression model, 

pix ,  is the value of the p’th catchment descriptor for the i’th catchment and pθ  is the 
p’th regression model parameter. Only a limited investigation has been made of  the 
errors, iγ : the results of the OLS regression are reported (Table 2) as if they can be 
assumed to be independent and normally distributed with mean zero and variance 2γσ , 
whereas the errors are very likely to be correlated between the catchments. Thus the 
estimates of the standard errors of the regression parameters are likely to be too small. 
The use of OLS estimates at this stage rather than GLS estimates is not thought to be 
important. 
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Table 2: Summary statistics for regression model describing [ ]iβln . 

Coefficient Parameter pθ  Standard error t-value p-value 

Intercept ( 0θ ) -1.1221 0.0664 -16.906 < 2-16 

Ln[AREA] -0.0816 0.0105 -7.783 3.12 10-14 
Ln[SAAR/1000] -0.4580 0.0401 -11.431 < 2-16 
Ln[BFIHOST] 0.1065 0.0520 2.049 0.0409 

28.0598107.0 22 === rdfγσ  

 
The regression model has an r2 value of only 28% which indicates less predictive 
power than could have been hoped for, but this relates to the substantial sampling 
error in the estimates of the GLO scale parameters. To estimate the sampling 
covariance εΣ  estimates of β  obtained through Eq. (13) are substituted into Eq. (11). 
 
Modelling error. The two components of the modelling error covariance (the 
modelling error variance, 2ησ , and the modelling error correlation matrix, ηR ) can 
now be estimated using the recursive procedure outlined in the previous section. 
While the procedure provides recursive estimates of both 2

ησ  and ηR , at present only 
the former is used to determine if the procedure has converged. To start the iterations, 
it is necessary to make initial guesses of the values of both 2

ησ  and ηR . In this study, 
a large value ( 1002 =ησ ) was chosen for the modelling error variance, and a unit 
matrix ( IRη = ) for the modelling error correlation. 

The first step recursion is to transform the estimated raw residuals, ω̂ , into 
the corresponding GLS residuals, ω~ , through Eq. (11). Using the residual sum of 
squares of the GLS residuals, an iterative estimate of the modelling error variance 

2
ησ  is obtained from Eq. (7). Next, the off-diagonal elements of ηR  are estimated. 

By re-ordering Eq. (10) it can be ascertained that 
 

{ }
η

T

RB
ωω =+
2

~~~~

ησ
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        (14) 

 
where the matrix B is a bias correction given as ( ) η

1
G

T11TT
G

T
η UUXXGXXUUB −−−−= . 

If all catchment-pairs within a specified distance interval, between 1 km and 2 km 
say, are grouped together, and it is assumed that the correlation between the 
modelling errors depends only on distance, then an estimate of the average 
correlation for this distance interval, dr ,η  can be obtained as 
 

( ) ( )∑
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where bij are elements in the bias correction matrix B and where k in the summation  
represents the k’th (out of nd) pair of catchments i and j whose inter-centroid distance 
is in the d’th bin. The final step in the recursive procedure is to fit a distance-based 
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function to the estimates of dr ,η . In this study, distances up to 800 km were 
investigated with interval lengths of 4 km, i.e. a total of 200 bins. Based on initial 
trial runs it was found that the weighted sum of two exponential-type functions  
 

[ ] ( ) [ ]ddr d 21, exp1exp ϕψϕψη −−+−= ,     (16) 

 
gives a reasonable fit to the average correlation values derived in Eq. (15) when 
fitted using a simple least square technique. Here 1ϕ , 2ϕ  and ψ  are model 
parameters and d is the distance. When finally constructing the recursive estimate of 
the modelling error correlation matrix ηR , the value of each off-diagonal element is 
derived from Eq. (16) substituting d with the actual distance ijd  between the 
catchment-pair being considered. 
 
 
Results. With a tolerance level of 10-4, a total of 23 iterations were needed for the 
modelling error variance to have converged. The resulting regression model statistics 
are shown in Table 3 and the estimated average bias corrected residual cross-product, 

dr ,η , along with the fitted weighted exponential function are shown in Figure 2. The 
double exponential function in Figure 2 has been fitted to data from the 200 bins. To 
ensure convergence of the recursive procedure, it was necessary to replace the 
estimate of 2

ησ  in Eq. (15) with ( ) 22
,

2
1, ii ηη σσ +− , where the extra subscript i indicate 

the iteration. Figure 2 also shows the average residual cross-product between the 
GLS residuals. For these residuals, the bias corrected cross-products are expected to 
be close to zero, which appears reasonable from a visual inspection of Figure 2.  
 

 
Figure 2: Bias corrected correlations for both GLS residuals and re-weighted 

GLS residuals. 
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Note that the procedure used for assigning pairs of catchments to the different 
distance bins is likely to result in a different number of pairs in each bin. In fact, the 
increase in the scatter of both types of residuals at short and large distances is 
probably due to the relatively smaller number of catchment-pairs allocated to these 
bins. 
 
Table 3: Summary statistics for regression model describing [ ]iyln . 

Coefficient Parameter 

pβ  
Standard 
error 

t-value p-value 

Intercept ( 0β ) 0.1010 0.4631 0.218 0.827 

Ln[AREA] 0.9967 0.1509 6.605 8.82 10-11 
Ln[AREA]2 -0.0140 0.0148 -0.946 0.345 
Ln[SAAR/1000] 1.7505 0.2300 7.611 1.07 10-13 
Ln[FARL] 3.7763 0.6984 5.407 9.29 10-8 
Ln[SPRHOST/100] 1.1228 0.1203 9.333 < 2 10-16 
RESHOST -3.7959 0.1008 -3.764 1.84 10-4 

938.0595155.0 22 === rdfησ  

 
 The results in Table 3 indicate that most catchment descriptors included in 
the regression model have coefficients significantly different from zero. One possible 
exception is the Ln[AREA]2 term. However, for the purpose of testing the recursive 
GLS procedure, no further attempts to adjust the regression model was undertaken. 
 
Conclusion 
 
This paper has outlined the development of a recursive procedure for estimating 
hydrological regression models. The procedure is considered an extension of the 
GLS model presented by Stedinger and Tasker (1989) by allowing the regression 
model errors to be cross-correlated. Initial testing of the procedure, on a dataset 
consisting of annual maximum series of instantaneous flow from 602 catchments 
located throughout the UK, has provided promising results in terms of estimating the 
regression model parameters. Some problems with regards to non-convergence in 
certain instances are still evident and require further attention. These problems are 
particularly evident for very simple regression models where the index flood is 
modelled using only very few catchment descriptors, for example using AREA only. 

The procedure provides a method for verifying the existence or not of 
correlation between the modelling errors. Once a functional form for this cross 
correlation has been identified, it is likely that a more efficient procedure for 
estimating the regression model parameters (and, indeed the overall set of model 
parameters) can be developed using maximum-likelihood or Bayesian techniques. 
However, the more exploratory approach described here has two benefits. Firstly it 
allows consideration to be given to other ways of defining a distance to be used 
within the correlation function, for example taking into account river-network 
connectivity. Secondly, it allows some extra quality control of large datasets to be 
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made through the investigation of any anomalous correlations calculated for  the 
distance-bins. 
 In the UK it is recommended practice that estimates of the index flood 
obtained at an ungauged site by using a regression model should, if possible, be 
adjusted through transfer of data from a nearby similar gauged catchment. This was 
on the basis that regression errors at nearby catchments were expected to be similar. 
It was shown by Kjeldsen and Jones (2007) that the best use of the transferred data 
depends on the correlation between the regression modelling errors at the two sites, 
as does the benefit obtained from the transfer in terms of improved prediction 
variance. Thus, the functional form of the model error correlation estimated in this 
study, i.e. the estimated form of Eq. (11) shown in Figure 2, can potentially become 
part of an improved procedure for data transfer in estimation of the index flood in the 
UK. 
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