140 research outputs found

    The effect of immunosuppressants on the prognosis of SARS-CoV-2 infection

    Get PDF
    BACKGROUND: Immunosuppression may worsen SARS-CoV-2 infection. We conducted a nationwide cohort study of the effect of exposure to immunosuppressants on the prognosis of SARS-CoV-2 infection in Denmark. METHODS: We identified all SARS-CoV-2 test-positive patients from February to October 2020 and linked health care data from nationwide registers, including prescriptions for the exposure, immunosuppressant drugs. We estimated relative risks of hospital admission, intensive care unit (ICU) admission, and death (each studied independently up to 30 days from testing) with a log linear binomial regression adjusted for confounders using a propensity score-based matching weights model. RESULTS: A composite immunosuppressant exposure was associated with a significantly increased risk of death (adjusted relative risk 1·56 [95% confidence interval 1.10–2.22]). The increased risk of death was mainly driven by exposure to systemic glucocorticoids (aRR 2.38 [95% CI 1.72–3.30]), which were also associated with an increased risk of hospital admission (aRR 1.34 [95% CI 1.10–1.62]), but not ICU admission (aRR 1.76 [95% CI [0.93–3.35]); these risks were greater for high cumulative doses of glucocorticoids than for moderate doses. Exposure to selective immunosuppressants, tumour necrosis factor inhibitors, or interleukin inhibitors, was not associated with an increased risk of hospitalisation, ICU admission, or death, nor was exposure to calcineurin inhibitors, other immunosuppressants, hydroxychloroquine, or chloroquine. CONCLUSIONS: Exposure to glucocorticoids was associated with increased risks of hospital admission and death. Further investigation is needed to determine the optimal management of COVID-19 in patients with pre-morbid glucocorticoid usage, specifically whether these patients require altered doses of glucocorticoids

    Clinical parameters affecting survival outcomes in patients with low-grade serous ovarian carcinoma: An international multicentre analysis

    Get PDF
    Background: Women with low-grade ovarian serous carcinoma (LGSC) benefit from surgical treatment; however, the role of chemotherapy is controversial. We examined an international database through the Ovarian Cancer Association Consortium to identify factors that affect survival in LGSC. Methods: We performed a retrospective cohort analysis of patients with LGSC who had had primary surgery and had overall survival data available. We performed univariate and multivariate analyses of progression-free survival and overall survival, and generated Kaplan–Meier survival curves. Results: Of the 707 patients with LGSC, 680 (96.2%) had available overall survival data. The patients’ median age overall was 54 years. Of the 659 patients with International Federation of Obstetrics and Gynecology stage data, 156 (23.7%) had stage I disease, 64 (9.7%) had stage II, 395 (59.9%) had stage III, and 44 (6.7%) had stage IV. Of the 377 patients with surgical data, 200 (53.0%) had no visible residual disease. Of the 361 patients with chemotherapy data, 330 (91.4%) received first-line platinum-based chemotherapy. The median follow-up duration was 5.0 years. The median progression-free survival and overall survival were 43.2 months and 110.4 months, respectively. Multivariate analysis indicated a statistically significant impact of stage and residual disease on progression-free survival and overall survival. Platinum-based chemotherapy was not associated with a survival advantage. Conclusion: This multicentre analysis indicates that complete surgical cytoreduction to no visible residual disease has the most impact on improved survival in LGSC. This finding could immediately inform and change practice.publishedVersio

    Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.

    Get PDF
    BACKGROUND: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D. METHODS: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided. RESULTS: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC. CONCLUSIONS: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models

    Estrogen Receptor Beta rs1271572 Polymorphism and Invasive Ovarian Carcinoma Risk: Pooled Analysis within the Ovarian Cancer Association Consortium

    Get PDF
    The association of ovarian carcinoma risk with the polymorphism rs1271572 in the estrogen receptor beta (ESR2) gene was examined in 4946 women with primary invasive ovarian carcinoma and 6582 controls in a pooled analysis of ten case-control studies within the Ovarian Cancer Association Consortium (OCAC). All participants were non-Hispanic white women. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression adjusted for site and age. Women with the TT genotype were at increased risk of ovarian carcinoma compared to carriers of the G allele (OR = 1.10; 95%; CI: 1.01–1.21; p = 0.04); the OR was 1.09 (CI: 0.99–1.20; p = 0.07) after excluding data from the center (Hawaii) that nominated this SNP for OCAC genotyping A stronger association of rs1271572 TT versus GT/GG with risk was observed among women aged ≤50 years versus older women (OR = 1.35; CI: 1.12–1.62; p = 0.002; p for interaction = 0.02) that remained statistically significant after excluding Hawaii data (OR = 1.34; CI: 1.11–1.61; p = 0.009). No heterogeneity of the association was observed by study, menopausal status, gravidity, parity, use of contraceptive or menopausal hormones, tumor histological type, or stage at diagnosis. This pooled analysis suggests that rs1271572 might influence the risk of ovarian cancer, in particular among younger women

    Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci.

    Get PDF
    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci.The OCAC Oncoarray genotyping project was funded through grants from the U.S. National Institutes of Health 2 (NIH) (CA1X01HG007491-01, U19-CA148112, R01-CA149429 and R01-CA058598); Canadian Institutes of Health 3 Research (MOP-86727) and the Ovarian Cancer Research Fund (OCRF). Funding for the iCOGS infrastructure came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. AUS studies (Australian Ovarian Cancer Study and the Australian Cancer Study) were funded by the U.S. Army Medical Research and Materiel Command (DAMD17-01-1-0729), National Health & Medical Research Council of Australia (199600 and 400281), Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania, Cancer Foundation of Western Australia (Multi-State Application Numbers 191, 211 and 182). The Bavarian study (BAV) was supported by ELAN Funds of the University of Erlangen-Nuremberg. The Belgian study (BEL) was funded by Nationaal Kankerplan. The BVU study was funded by Vanderbilt CTSA grant from the National Institutes of Health (NIH)/National Center for Advancing Translational Sciences (NCATS) (ULTR000445). The CNIO Ovarian Cancer Study (CNI) study was supported by Instituto de Salud Carlos III (PI 12/01319); Ministerio de Economía y Competitividad (SAF2012). The Hawaii Ovarian Cancer Study (HAW) was supported the U.S. National Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001). The Hannover-Jena Ovarian Cancer Study (HJO) study was funded by intramural funding through the Rudolf-Bartling Foundation. The Hormones and Ovarian Cancer Prediction study (HOP) was supported by US National Cancer Institute: K07-CA80668; R01CA095023; P50-CA159981; R01-CA126841; US Army Medical Research and Materiel Command: DAMD17-02-1-0669; NIH/National Center for Research Resources/General Clinical Research Center grant MO1- RR000056. The Women’s Cancer Program (LAX) was supported by the American Cancer Society Early Detection Professorship (120950-SIOP-06-258-06-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. The Mayo Clinic Case-Only Ovarian Cancer Study (MAC) and the Mayo Clinic Ovarian Cancer Case-Control Study (MAY) were funded by the National Institutes of Health (R01-CA122443, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation; Fraternal Order of Eagles. The MALOVA study (MAL) was funded by research grant R01- CA61107 from the National Cancer Institute, Bethesda, Md; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project. The North Carolina Ovarian Cancer Study (NCO) National Institutes of Health (R01-CA76016) and the Department of Defense (DAMD17-02-1-0666). The New England-based Case-Control Study of Ovarian Cancer (NEC) was supported by NIH grants R01 CA 054419-10 and P50 CA105009, and Department of Defense CDMRP grant W81XWH-10-1-0280. The University of Bergen, Haukeland University Hospital, Norway study (NOR) was funded by Helse Vest, The Norwegian Cancer Society, The Research Council of Norway. The Oregon study (ORE) was funded by the Sherie Hildreth Ovarian Cancer Research Fund and the OHSU Foundation. The Ovarian Cancer Prognosis and Lifestyle Study (OPL) was funded by National Health and Medical Research Council (NHMRC) of Australia (APP1025142) and Brisbane Women’s Club. The Danish Pelvic Mass Study (PVD) was funded by Herlev Hospitals Forskningsråd, Direktør Jacob Madsens og Hustru Olga Madsens fond, Arvid Nilssons fond, Gangsted fonden, Herlev Hospitals Forskningsråd and Danish Cancer Society. The Royal Brisbane Hospital (RBH) study was funded by the National Health and Medical Research Council of Australia. The Scottish Randomised Trial in Ovarian Cancer study (SRO) was funded by Cancer Research UK (C536/A13086, C536/A6689) and Imperial Experimental Cancer Research Centre (C1312/A15589). The Princess Margaret Cancer Centre study (UHN) was funded by Princess Margaret Cancer Centre Foundation-Bridge for the Cure. The Gynaecological Oncology Biobank at Westmead (WMH) is a member of the Australasian Biospecimen Network-Oncology group, funded by the Australian National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 and 15/RIG/1-16. OVCARE Gynecologic Tissue Bank and Outcomes Unit (VAN) study was funded by BC Cancer Foundation, VGH & UBC Hospital Foundation. Stuart MacGregor acknowledges funding from an Australian Research Council Future Fellowship and an Australian National Health and Medical Research Council project grant (APP1051698). Anna deFazio was funded by the University of Sydney Cancer Research Fund and the Cancer Institute NSW through the Sydney West-Translational Cancer Research Centre. Dr. Beth Y. Karlan is supported by American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. Irene Orlow was supported by NCI CCSG award (P30-CA008748). GCT, PW and TO’M were funded by NHMRC Fellowships

    Counteracting Age-related Loss of Skeletal Muscle Mass: a clinical and ethnological trial on the role of protein supplementation and training load (CALM Intervention Study): study protocol for a randomized controlled trial

    Full text link

    Polymorphisms in Stromal Genes and Susceptibility to Serous Epithelial Ovarian Cancer: A Report from the Ovarian Cancer Association Consortium

    Get PDF
    Peer reviewe
    • …
    corecore