1,527 research outputs found

    Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3

    Get PDF
    Metallic antiferromagnets with noncollinear orientation of magnetic moments provide a playground for investigating spin-dependent transport properties by analysis of the anomalous Hall effect. The intermetallic compound Mn5Si3 is an intinerant antiferromagnet with collinear and noncollinear magnetic structures due to Mn atoms on two inequivalent lattice sites. Here, magnetotransport measurements on polycrystalline thin films and a single crystal are reported. In all samples, an additional contribution to the anomalous Hall effect attributed to the noncollinear arrangment of magnetic moments is observed. Furthermore, an additional magnetic phase between the noncollinear and collinear regimes above a metamagnetic transition is resolved in the single crystal by the anomalous Hall effect.Comment: 7 pages, 4 figure

    Competing magnetic correlations across the ferromagnetic quantum critical point in the Kondo system CeTi1x_{1-x}Vx_xGe3_3: 51^{51}V NMR as a local probe

    Full text link
    51^{51}V nuclear magnetic resonance (NMR) and magnetization studies on CeTi1x_{1-x}Vx_xGe3_3 have been performed to explore the evolution from the ferromagnetic (x=0.113x = 0.113) to the antiferromagnetic Kondo lattice state (x=1x = 1), with focus on the emergence of a possible ferromagnetic quantum critical point (FMQCP) at xc0.4x_c \approx 0.4. From the temperature dependence of the nuclear spin-lattice relaxation rate, 1/T1T1/T_1T, and the Knight shift, \textit{K}, for x=0.113x=0.113 and x=1x=1 a considerable competition between ferro- and antiferromagnetic correlations is found. Around the critical concentration (x=0.35,0.405x = 0.35, 0.405) quantum-critical spin fluctuations entail weak antiferromagnetic spin fluctuations admixed with ferromagnetic spin fluctuations. The FMQCP in CeTi1x_{1-x}Vx_xGe3_3 therefore is not purely ferromagnetic in nature.Comment: 9 pages and 12 figures, accepted at PR

    Mitochondrial Ca²⁺ Uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses

    Get PDF
    Long-term changes in synaptic strength form the basis of learning and memory. These changes rely upon energy demanding mechanisms which are regulated by local Ca2+ signaling. Mitochondria are optimised for providing energy and buffering Ca2+. However, our understanding of the role of mitochondria in regulating synaptic plasticity is incomplete. Here we have used optical and electrophysiological techniques in cultured hippocampal neurons and ex vivo hippocampal slices from mice with haploinsufficiency of the mitochondrial Ca2+ uniporter (MCU+/-) to address whether reducing mitochondrial Ca2+ uptake alters synaptic transmission and plasticity. We found that cultured MCU+/- hippocampal neurons have impaired Ca2+ clearance, and consequently enhanced synaptic vesicle fusion at presynapses occupied by mitochondria. Furthermore, long-term potentiation (LTP) at mossy fibre (MF) synapses, a process which is dependent on presynaptic Ca2+ accumulation, is enhanced in MCU+/- slices. Our results reveal a previously unrecognized role for mitochondria in regulating presynaptic plasticity of a major excitatory pathway involved in learning and memory

    Segmentation of Skin Lesions Using Level Set Method

    Get PDF
    Diagnosis of skin cancers with dermoscopy has been widely accepted as a clinical routine. However, the diagnostic accuracy using dermoscopy relies on the subjective judgment of the dermatologist. To solve this problem, a computer-aided diagnosis system is demanded. Here, we propose a level set method to fulfill the segmentation of skin lesions presented in dermoscopic images. The differences between normal skin and skin lesions in the color channels are combined to define the speed function, with which the evolving curve can be guided to reach the boundary of skin lesions. The proposed algorithm is robust against the influences of noise, hair, and skin textures, and provides a flexible way for segmentation. Numerical experiments demonstrated the effectiveness of the novel algorithm
    corecore