69 research outputs found

    Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission

    Full text link
    When a single quantum of electromagnetic field excitation is added to the same spatio-temporal mode of a coherent state, a new field state is generated that exhibits intermediate properties between those of the two parents. Such a single-photon-added coherent state is obtained by the action of the photon creation operator on a coherent state and can thus be regarded as the result of the most elementary excitation process of a classical light field. Here we present and describe in depth the experimental realization of such states and their complete analysis by means of a novel ultrafast, time-domain, quantum homodyne tomography technique clearly revealing their non-classical character.Comment: 9 pages, 9 figures. Accepted for publication in Phys. Rev.

    Photoinduced dynamics in ferroelectric semiconductor Sn2P2S6

    Full text link
    This work was partly supported by the Russian Ministry of Science and Higher Education (grant 3.7500.2017/9.10) and Russian Foundation of Basic Research (grant 18-32-20047). The studies were performed using the equipment of the Joint Center for Collective Use RTU MIREA

    Perturbative regime of terahertz high-harmonics generation in topological insulators

    Full text link
    In this Letter, terahertz high harmonic generation processes in topological insulators of the bismuth and antimony chalcogenides family are investigated. Field conversion efficiencies are determined and clean cubic and quintic power-law scaling is observed for third and fifth harmonics, up to driving terahertz fields of 140 kV/cm. This is in contrast to all previous experiments on terahertz harmonics generation in Dirac materials where a non-perturbative regime has been observed already at few 10s kV/cm driving fields. Our nonlinear THz spectroscopy experiments are complemented by THz pump - optical probe measurements showing distinctly different relaxation dynamics of the carriers in the topologically-protected Dirac states at the surfaces and the bulk. The THz-induced dynamics of surface states reveal ultrafast relaxation that prevents accumulation effects, and results in a clear perturbative regime of THz harmonics generation that is different to graphene or Dirac semimetals with their slower relaxation times in the few ps regime

    Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators

    Get PDF
    Topologically protected surface states present rich physics and promising spintronic, optoelectronic, and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons and TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.Parts of this research were carried out at ELBE at the Helmholtz-Zentrum Dresden-Rossendorf e.V., a member of the Helmholtz Association. The films are grown in IRE RAS within the framework of the state task. This work was supported by the RFBR grants Nos. 18-29-20101, 19-02-00598. N.A., S.K., and I.I. acknowledge support from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 737038 (TRANSPIRE). T.V.A.G.O. and L.M.E. acknowledge the support by the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter (ct.qmat). K.-J.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 804349 (ERC StG CUHL) and financial support through the MAINZ Visiting Professorship. ICN2 was supported by the Severo Ochoa program from Spanish MINECO Grant No. SEV-2017-0706

    Establishment and characterisation of six human biliary tract cancer cell lines

    Get PDF
    Human cell lines established from biliary tract cancers are rare, and only five have been reported previously. We report the characterisation of six new six biliary tract cancer cell lines (designated SNU-245, SNU-308, SNU-478, SNU-869, SNU-1079 and SNU-1196) established from primary tumour samples of Korean patients. The cell lines were isolated from two extrahepatic bile duct cancers (one adenocarcinoma of common bile duct, one hilar bile duct cancer), two adenocarcinomas of ampulla of Vater, one intrahepatic bile duct cancer (cholangiocarcinoma), and one adenocarcinoma of the gall bladder. The cell phenotypes, including the histopathology of the primary tumours and in vitro growth characteristics, were determined. We also performed molecular characterisation, including DNA fingerprinting analysis and abnormalities of K-ras, p15, p16, p53, hMLH1, hMSH2, DPC4, β-catenin, E-cadherin, hOGG1, STK11, and TGF-βRII genes by PCR–SSCP and sequencing analysis. In addition, we compared the genetic alterations in tumour cell lines and their corresponding tumour tissues. All lines grew as adherent cells. Population doubling times varied from 48–72 h. The culture success rate was 20% (six out of 30 attempts). All cell lines showed (i) relatively high viability; (ii) absence of mycoplasma or bacteria contamination; and (iii) genetic heterogeneity by DNA fingerprinting analysis. Among the lines, three lines had p53 mutations; and homozygous deletions in both p16 and p15 genes were found three and three lines, respectively; one line had a heterozygous missense mutation in hMLH1; E-cadherin gene was hypermethylated in two lines. Since the establishment of biliary tract cancer cell lines has been rarely reported in the literature, these newly established and well characterised biliary tract cancer cell lines would be very useful for studying the biology of biliary tract cancers, particularly those related to hypermethylation of E-cadherin gene in biliary tract cancer

    Cancer effects of formaldehyde: a proposal for an indoor air guideline value

    Get PDF
    Formaldehyde is a ubiquitous indoor air pollutant that is classified as “Carcinogenic to humans (Group 1)” (IARC, Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropanol-2-ol. IARC monographs on the evaluation of carcinogenic risks to humans, vol 88. World Health Organization, Lyon, pp 39–325, 2006). For nasal cancer in rats, the exposure–response relationship is highly non-linear, supporting a no-observed-adverse-effect level (NOAEL) that allows setting a guideline value. Epidemiological studies reported no increased incidence of nasopharyngeal cancer in humans below a mean level of 1 ppm and peak levels below 4 ppm, consistent with results from rat studies. Rat studies indicate that cytotoxicity-induced cell proliferation (NOAEL at 1 ppm) is a key mechanism in development of nasal cancer. However, the linear unit risk approach that is based on conservative (“worst-case”) considerations is also used for risk characterization of formaldehyde exposures. Lymphohematopoietic malignancies are not observed consistently in animal studies and if caused by formaldehyde in humans, they are high-dose phenomenons with non-linear exposure–response relationships. Apparently, these diseases are not reported in epidemiological studies at peak exposures below 2 ppm and average exposures below 0.5 ppm. At the similar airborne exposure levels in rodents, the nasal cancer effect is much more prominent than lymphohematopoietic malignancies. Thus, prevention of nasal cancer is considered to prevent lymphohematopoietic malignancies. Departing from the rat studies, the guideline value of the WHO (Air quality guidelines for Europe, 2nd edn. World Health Organization, Regional Office for Europe, Copenhagen, pp 87–91, 2000), 0.08 ppm (0.1 mg m−3) formaldehyde, is considered preventive of carcinogenic effects in compliance with epidemiological findings

    Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis

    Get PDF
    Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case fora causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding

    Generation of terahertz radiation from the island films of topological insulator Bi2-xSbxTe3-ySey

    No full text
    The aim of the research was the studying of the topological insulators Bi2-xSbxTe3-ySey thin films with the different thickness and chemical composition. The obtained time dependences of terahertz radiation have indicated that the generation of THz waves was more efficient in the island film having a total thickness of about tens nanometers with the composition close to the Ren’s curve, where the volume contribution to the conductivity was suppressed. We have demonstrated an amplification of the THz radiation power by applying an external electric field to a topological insulator. This effect can be useful for fabricating photoconductive THz antennas based on topological insulators
    corecore