564 research outputs found

    Main-Belt Asteroids in the K2 Engineering Field of View

    Get PDF
    Unlike NASA's original Kepler Discovery Mission, the renewed K2 Mission will stare at the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effect of apparent minor planet encounters. Here we investigate the effects of asteroid encounters on photometric precision using a sub-sample of the K2 Engineering data taken in February, 2014. We show examples of asteroid contamination to facilitate their recognition and distinguish these events from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission, that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.Comment: accepted for publication in AJ, 6 page

    Dense cores in the dark cloud complex LDN1188

    Full text link
    We present a molecular line emission study of the LDN1188 dark cloud complex located in Cepheus. In this work we focused on the densest parts of the cloud and on the close neighbourhood of infrared point sources. We made ammonia mapping with the Effelsberg 100-m radio telescope and identified 3 dense cores. CS(1--0), CS(2--1) and HCO+^{+}(1--0) measurements performed with the Onsala 20\,m telescope revealed the distribution of dense molecular material. The molecular line measurements were supplemented by mapping the dust emission at 1.2\,mm in some selected directions using the IRAM 30\,m telescope. With these data we could work out a likely evolutionary sequence in this dark clould complex.Comment: YouResAstro2012 conference presentation; accepted to Astronomishen Nachrichten (25-July-2013

    Discovery of the spectroscopic binary nature of six southern Cepheids

    Get PDF
    We present the analysis of photometric and spectroscopic data of six bright Galactic Cepheids: GH Carinae, V419 Centauri, V898 Centauri, AD Puppis, AY Sagittarii, and ST Velorum. Based on new radial velocity data (in some cases supplemented with earlier data available in the literature), these Cepheids have been found to be members in spectroscopic binary systems. V898 Cen turned out to have one of the largest orbital radial velocity amplitude (> 40 km/s) among the known binary Cepheids. The data are insufficient to determine the orbital periods nor other orbital elements for these new spectroscopic binaries. These discoveries corroborate the statement on the high frequency of occurrence of binaries among the classical Cepheids, a fact to be taken into account when calibrating the period-luminosity relationship for Cepheids. We have also compiled all available photometric data that revealed that the pulsation period of AD Pup, the longest period Cepheid in this sample, is continuously increasing with Delta P = 0.004567 d/century, likely to be caused by stellar evolution. The wave-like pattern superimposed on the parabolic O-C graph of AD Pup may well be caused by the light-time effect in the binary system. ST Vel also pulsates with a continuously increasing period. The other four Cepheids are characterised with stable pulsation periods in the last half century.Comment: accepted by the MNRAS, 11 pages, 16 figures, 18 tables, a part of the data can be downloaded from the online version of this articl

    The impact of main belt asteroids on infrared--submillimetre photometry and source counts

    Get PDF
    > Among the components of the infrared and submillimetre sky background, the closest layer is the thermal emission of dust particles and minor bodies in the Solar System. This contribution is especially important for current and future infrared and submillimetre space instruments --like those of Spitzer, Akari and Herschel -- and must be characterised by a reliable statistical model. > We describe the impact of the thermal emission of main belt asteroids on the 5...1000um photometry and source counts, for the current and future spaceborne and ground-based instruments, in general, as well as for specific dates and sky positions. > We used the statistical asteroid model (SAM) to calculate the positions of main belt asteroids down to a size of 1km, and calculated their infrared and submillimetre brightness using the standard thermal model. Fluctuation powers, confusion noise values and number counts were derived from the fluxes of individual asteroids. > We have constructed a large database of infrared and submillimetre fluxes for SAM asteroids with a temporal resolution of 5 days, covering the time span January 1, 2000 -- December 31, 2012. Asteroid fluctuation powers and number counts derived from this database can be obtained for a specific observation setup via our public web-interface. > Current space instruments working in the mid-infrared regime (Akari and Spitzer Space Telescopes) are affected by asteroid confusion noise in some specific areas of the sky, while the photometry of space infrared and submillimetre instruments in the near future (e.g. Herschel and Planck Space Observatories) will not be affected by asteroids. Faint main belt asteroids might also be responsible for most of the zodiacal emission fluctuations near the ecliptic.Comment: accepted for publication in Astronomy & Astrophysics; Additional material (appendices) and the related web-interface can be found at: "http://kisag.konkoly.hu/solarsystem/irsam.html

    Comet C/2013 A1 (Siding Spring) as seen with the Herschel Space Observatory

    Full text link
    The thermal emission of comet C/2013 A1 (Siding Spring) was observed on March 31, 2013, at a heliocentric distance of 6.48 au using the PACS photometer camera of the Herschel Space Observatory. The comet was clearly active, showing a coma that could be traced to a distance of 10", i.e. 50000 km. Analysis of the radial intensity profiles of the coma provided dust mass and dust production rate; the derived grain size distribution characteristics indicate an overabundance of large grains in the thermal emission. We estimate that activity started about 6 months before these observations, at a heliocentric distance of 8 au.Comment: 4 pages, 3 figures + a one-page Appendix with 2 figures, accepted for publication in Astronomy & Astrophysics (Letter

    Constraints on the nature of dust particles by infrared observations

    Get PDF
    The far-infrared (FIR) emissivity of dust is an important parameter characterizing the physical properties of the grains. With the availability of stellar databases and far-infrared data from Infrared Space Observatory (ISO) it is possible to compare the optical and infrared properties of dust, and derive the far-infrared emissivity with respect to the optical extinction. In this paper we present the results of a systematic analysis of the FIR emissivity of interstellar clouds observed with ISOPHOT (the photometer onboard ISO) at least at two infrared wavelengths, one close to ~100um and one at 200um. We constructed FIR emission maps, determined dust temperatures, created extinction maps using 2MASS survey data, and calculated far-infrared emissivity for each of these clouds. We present the largest homogeneously reduced database constructed so far for this purpose. During the data analysis special care was taken on possible systematic errors. We find that far-infrared emissivity has a clear dependence on temperature. The emissivity is enhanced by a factor of usually less than 2 in the low dust temperature regime of 12K<=T_d<=14K. This result suggests larger grain sizes in those regions. However, the emissivity increase of typically below 2 restricts the possible grain growth processes to ice-mantle formation and coagulation of silicate grains, and excludes the coagulation of carbonaceous particles on the scales of the regions we investigated. In the temperature range 14K<=T_d<=16K a systematic decrease of emissivity is observed with respect to the values of the diffuse interstellar matter. Possible scenarios for this behaviour are discussed in the paper.Comment: Accepted for publication in MNRA

    Identification of Young Stellar Object candidates in the GaiaGaia DR2 x AllWISE catalogue with machine learning methods

    Get PDF
    The second GaiaGaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean GaiaGaia GG magnitude <<20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the GaiaGaia DR2 database with WISE and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars and evolved stars. At a 90% probability threshold we identified 1,129,295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published GaiaGaia Science Alerts. As GaiaGaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disk. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30% more of the published GaiaGaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future GaiaGaia alerts.Comment: 19 pages, 12 figures, 3 table

    Optimized Herschel/PACS photometer observing and data reduction strategies for moving solar system targets

    Get PDF
    The "TNOs are Cool!: A survey of the trans-Neptunian region" is a Herschel Open Time Key Program that aims to characterize planetary bodies at the outskirts of the Solar System using PACS and SPIRE data, mostly taken as scan-maps. In this paper we summarize our PACS data reduction scheme that uses a modified version of the standard pipeline for basic data reduction, optimized for faint, moving targets. Due to the low flux density of our targets the observations are confusion noise limited or at least often affected by bright nearby background sources at 100 and 160\,μ\mum. To overcome these problems we developed techniques to characterize and eliminate the background at the positions of our targets and a background matching technique to compensate for pointing errors. We derive a variety of maps as science data products that are used depending on the source flux and background levels and the scientific purpose. Our techniques are also applicable to a wealth of other Herschel solar system photometric observations, e.g. comets and near-Earth asteroids. The principles of our observing strategies and reduction techniques for moving targets will also be applicable for similar surveys of future infrared space projects.Comment: Accepted for publication in Experimental Astronom

    A photometric monitoring of bright high-amplitude delta Scuti stars. II. Period updates for seven stars

    Full text link
    We present new photometric data for seven high-amplitude delta Scuti stars. The observations were acquired between 1996 and 2002, mostly in the Johnson photometric system. For one star (GW UMa), our observations are the first since the discovery of its pulsational nature from the Hipparcos data.The primary goal of this project was to update our knowledge on the period variations of the target stars. For this, we have collected all available photometric observations from the literature and constructed decades-long O-C diagrams of the stars. This traditional method is useful because of the single-periodic nature of the light variations. Text-book examples of slow period evolution (XX Cyg, DY Her, DY Peg) and cyclic period changes due to light-time effect (LITE) in a binary system (SZ Lyn) are updated with the new observations. For YZ Boo, we find a period decrease instead of increase. The previously suggested LITE-solution of BE Lyn (Kiss & Szatmary 1995) is not supported with the new O-C diagram. Instead of that, we suspect the presence of transient light curve shape variations mimicking small period changes.Comment: 11 pages, 15 figures, accepted for publication in A&

    ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997

    Get PDF
    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here we report on the detection of 12CO and 13CO in the J=2-1 and J=3-2 transitions and C18O in the J=2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r_in < 26 AU, r_out = 138 +/- 20 AU, M_*=1.8 +0.5 -0.2 M_Sun, and i = 32.6 +/- 3.1 degrees. The total CO mass, as calculated from the optically thin C18O line, is about (4-8) x 10^-2 M_Earth, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from the ALMA continuum observations by Mo\'or et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not co-located, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not co-located. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.Comment: 8 pages, 4 figures, accepted for publication in Ap
    corecore