633 research outputs found

    The orbital period of Nova V2540 Ophiuchi (2002)

    Full text link
    We present the results of 26 nights of CCD photometry of the nova V2540 Oph (2002) from 2003 and 2004. We find a period of 0.284781 +/- 0.000006 d (6.8347 +/- 0.0001 h) in the data. Since this period was present in the light curves taken in both years, with no apparent change in its value or amplitude, we interpret it as the orbital period of the nova binary system. The mass-period relation for cataclysmic variables yields a secondary mass of about 0.75 +/- 0.04 Msun. From maximum magnitude - rate of decline relation, we estimate a maximum absolute visual magnitude of M(V)=-6.2 +/- 0.4 mag. This value leads to an uncorrected distance modulus of (m-M) = 14.7 +/- 0.7. By using the interstellar reddening for the location of V2540 Oph, we find a rough estimate for the distance of 5.2 +/- 0.8 kpc. We propose that V2540 Oph is either: 1) a high inclination cataclysmic variable showing a reflection effect of the secondary star, or having a spiral structure in the accretion disc, 2) a high inclination intermediate polar system, or less likely 3) a polar.Comment: 8 pages, 7 figures, accepted by PAS

    Biodegradable ceramics consisting of hydroxyapatite for orthopaedic implants

    Get PDF
    This study aims to analyze hydroxyapatite (HAP) coatings enriched with Mg and Ti prepared by a magnetron sputtering technique on Ti6Al4V substrate. For preparation of the coatings, three magnetron targets (HAP, MgO and TiO2) were simultaneously co-worked. The concentration of Mg added was varied by modifying the power applied to the MgO target. In all coatings, the Ti concentration was maintained constant by keeping the same cathode power fed during the whole deposition. The influence of different Mg dopant contents on the formation of phase, microstructure and morphology of the obtained Ti-doped HAP coatings were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Moreover, the effects of Mg addition upon corrosion, mechanical and biological properties were also investigated. Mg- and Ti-doped HAP coating obtained at low radio-frequency (RF) power fed to the MgO target provided material with high corrosion resistance compared to other coatings and bare alloy. A slight decrease in hardness of the coatings was found after the Mg addition, from 8.8 to 5.7 GPa. Also, the values of elastic modulus were decreased from 87 to 53 GPa, this being an advantage for biomedical applications. The coatings with low Mg concentration proved to have good deformation to yielding and higher plastic properties. Biological test results showed that the novel surfaces exhibited excellent properties for the adhesion and growth of bone cells. Moreover, early adherent vital cell numbers were significantly higher on both coatings compared to Ti6Al4V, suggesting that Mg ions may accelerate initial osteoblast adhesion and proliferation

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Enhanced snoMEN Vectors Facilitate Establishment of GFP–HIF-1α Protein Replacement Human Cell Lines

    Get PDF
    The snoMEN (snoRNA Modulator of gene ExpressioN) vector technology was developed from a human box C/D snoRNA, HBII-180C, which contains an internal sequence that can be manipulated to make it complementary to RNA targets, allowing knock-down of targeted genes. Here we have screened additional human nucleolar snoRNAs and assessed their application for gene specific knock-downs to improve the efficiency of snoMEN vectors. We identify and characterise a new snoMEN vector, termed 47snoMEN, that is derived from box C/D snoRNA U47, demonstrating its use for knock-down of both endogenous cellular proteins and G/YFP-fusion proteins. Using multiplex 47snoMEM vectors that co-express multiple 47snoMEN in a single transcript, each of which can target different sites in the same mRNA, we document >3-fold increase in knock-down efficiency when compared with the original HBII-180C based snoMEN. The multiplex 47snoMEM vector allowed the construction of human protein replacement cell lines with improved efficiency, including the establishment of novel GFP–HIF-1α replacement cells. Quantitative mass spectrometry analysis confirmed the enhanced efficiency and specificity of protein replacement using the 47snoMEN-PR vectors. The 47snoMEN vectors expand the potential applications for snoMEN technology in gene expression studies, target validation and gene therapy

    Optimal and continuous anaemia control in a cohort of dialysis patients in Switzerland

    Get PDF
    BACKGROUND: Guidelines for the management of anaemia in patients with chronic kidney disease (CKD) recommend a minimal haemoglobin (Hb) target of 11 g/dL. Recent surveys indicate that this requirement is not met in many patients in Europe. In most studies, Hb is only assessed over a short-term period. The aim of this study was to examine the control of anaemia over a continuous long-term period in Switzerland. METHODS: A prospective multi-centre observational study was conducted in dialysed patients treated with recombinant human epoetin (EPO) beta, over a one-year follow-up period, with monthly assessments of anaemia parameters. RESULTS: Three hundred and fifty patients from 27 centres, representing 14% of the dialysis population in Switzerland, were included. Mean Hb was 11.9 +/- 1.0 g/dL, and remained stable over time. Eighty-five % of the patients achieved mean Hb >or= 11 g/dL. Mean EPO dose was 155 +/- 118 IU/kg/week, being delivered mostly by subcutaneous route (64-71%). Mean serum ferritin and transferrin saturation were 435 +/- 253 microg/L and 30 +/- 11%, respectively. At month 12, adequate iron stores were found in 72.5% of patients, whereas absolute and functional iron deficiencies were observed in only 5.1% and 17.8%, respectively. Multivariate analysis showed that diabetes unexpectedly influenced Hb towards higher levels (12.1 +/- 0.9 g/dL; p = 0.02). One year survival was significantly higher in patients with Hb >or= 11 g/dL than in those with Hb <11 g/dL (19.7% vs 7.3%, p = 0.006). CONCLUSION: In comparison to European studies of reference, this survey shows a remarkable and continuous control of anaemia in Swiss dialysis centres. These results were reached through moderately high EPO doses, mostly given subcutaneously, and careful iron therapy management

    High rate of in-stent restenosis after coronary intervention in carriers of the mutant mannose-binding lectin allele

    Get PDF
    BACKGROUND: In-stent restenosis occurs in 10-30% of patients following bare metal stent (BMS) implantation and has various risk factors. Mannose-binding lectin (MBL) is known to have effect on the progression of atherosclerosis. Single nucleotide polymorphisms (SNP) of the MBL2 gene intron 1 (codon 52, 54, 57) are known to modulate the bioavailability of the MBL protein. Our aim was to identify the association of these polymorphisms of the MBL gene in the occurrence of in-stent restenosis after coronary artery bare metal stent implantation. METHODS: In a non-randomized prospective study venous blood samples were collected after recoronarography from 225 patients with prior BMS implantation. Patients were assigned to diffuse restenosis group and control group based on the result of the coronarography. MBL genotypes were determined using quantitative real-time PCR. Proportion of different genotypes was compared and adjusted with traditional risk factors using multivariate logistic regression. RESULTS: Average follow-up time was 1.0 (+ - 1.4) year in the diffuse restenosis group (N = 117) and 2.7 (+ - 2.5) years in the control group (N = 108). The age, gender distribution and risk status was not different between study groups. Proportion of the MBL variant genotype was 26.8% (29 vs. 79 normal homozygous) in the control group and 39.3% (46 vs. 71 normal homozygous) in the restenosis group (p = 0.04). In multivariate analysis the mutant allele was an independent risk factor (OR = 1.96, p = 0.03) of in-stent restenosis. CONCLUSIONS: MBL polymorphisms are associated with higher incidence of development of coronary in-stent restenosis. The attenuated protein function in the mutant allelic genotype may represent the underlying mechanism

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Expression and Processing of a Small Nucleolar RNA from the Epstein-Barr Virus Genome

    Get PDF
    Small nucleolar RNAs (snoRNAs) are localized within the nucleolus, a sub-nuclear compartment, in which they guide ribosomal or spliceosomal RNA modifications, respectively. Up until now, snoRNAs have only been identified in eukaryal and archaeal genomes, but are notably absent in bacteria. By screening B lymphocytes for expression of non-coding RNAs (ncRNAs) induced by the Epstein-Barr virus (EBV), we here report, for the first time, the identification of a snoRNA gene within a viral genome, designated as v-snoRNA1. This genetic element displays all hallmark sequence motifs of a canonical C/D box snoRNA, namely C/C′- as well as D/D′-boxes. The nucleolar localization of v-snoRNA1 was verified by in situ hybridisation of EBV-infected cells. We also confirmed binding of the three canonical snoRNA proteins, fibrillarin, Nop56 and Nop58, to v-snoRNA1. The C-box motif of v-snoRNA1 was shown to be crucial for the stability of the viral snoRNA; its selective deletion in the viral genome led to a complete down-regulation of v-snoRNA1 expression levels within EBV-infected B cells. We further provide evidence that v-snoRNA1 might serve as a miRNA-like precursor, which is processed into 24 nt sized RNA species, designated as v-snoRNA124pp. A potential target site of v-snoRNA124pp was identified within the 3′-UTR of BALF5 mRNA which encodes the viral DNA polymerase. V-snoRNA1 was found to be expressed in all investigated EBV-positive cell lines, including lymphoblastoid cell lines (LCL). Interestingly, induction of the lytic cycle markedly up-regulated expression levels of v-snoRNA1 up to 30-fold. By a computational approach, we identified a v-snoRNA1 homolog in the rhesus lymphocryptovirus genome. This evolutionary conservation suggests an important role of v-snoRNA1 during γ-herpesvirus infection

    Cooperation between Engulfment Receptors: The Case of ABCA1 and MEGF10

    Get PDF
    The engulfment of dying cells is a specialized form of phagocytosis that is extremely conserved across evolution. In the worm, it is genetically controlled by two parallel pathways, which are only partially reconstituted in mammals. We focused on the recapitulation of the CED-1 defined pathway in mammalian systems. We first explored and validated MEGF10, a novel receptor bearing striking structural similarities to CED-1, as a bona fide functional ortholog in mammals and hence progressed toward the analysis of molecular interactions along the corresponding pathway. We ascertained that, in a system of forced expression by transfection, MEGF10 function can be modulated by the ATP binding cassette transporter ABCA1, ortholog to CED-7. Indeed, the coexpression of either a functional or a mutant ABCA1 exerted a transdominant positive or negative modulation on the MEGF10-dependent engulfment. The combined use of biochemical and biophysical approaches indicated that this functional cooperation relies on the alternate association of these receptors with a common partner, endogenously expressed in our cell system. We provide the first working model structuring in mammals the CED-1 dependent pathway
    corecore