3,215 research outputs found

    Electric Dipole Moments from Stark Effect in Supersonic Expansion: n-Propanol, n-Butanol, and n-Butyl Cyanide

    Get PDF
    The orientation and magnitude of the molecular electric dipole moment are key properties relevant to topics ranging from the nature of intermolecular interactions to the quantitative analysis of complex gas-phase mixtures, such as chemistry in astrophysical environments. Stark effect measurements on rotational spectra have been the method of choice for isolated molecules but have become less common with the practical disappearance of Stark modulation spectrometers. Their role has been taken over by supersonic expansion measurements within a Fabry-Perot resonator cavity, which introduces specific technical problems that need to be overcome. Several of the adopted solutions are described and compared. Presently, we report precise electric dipole moment determinations for the two most stable conformers of the selected molecules of confirmed or potential astrophysical relevance: n-propanol, n-butanol, and n-butyl cyanide. All dipole moment components have been precisely determined at supersonic expansion conditions by employing specially designed Stark electrodes and a computer program for fitting the measured Stark shifts, inclusive of cases with resolved nuclear quadrupole hyperfine structure. The experimental values are compared with suitable quantum chemistry computations. It is found that, among the tested levels of computation, vibrationally averaged dipole moments are the closest to the observation and the molecular values are, as in the lighter molecules in the series, largely determined by the hydroxyl or nitrile groups

    Searching for Bio-Precursors and Complex Organic Molecules in Space using the GBT

    Get PDF
    Using the latest microwave receiver technology, large organic molecules with abundances as low as approx. 10(exp -11) times that of molecular hydrogen are detectable in cold interstellar clouds via their rotational emission line spectra. We report new observations to search for complex molecules, including molecules of possible pre-biotic importance, using the newly-commissioned Kband focal plane array (KFPA) of the NRAO Robert C. Byrd Green Bank Telescope. Spectra are presented of the dense molecular cloud TMC-1, showing strict upper limits on the level of emission from nitrogen-bearing rings pyrimidine, quinoline and iso-quinoline, carbon-chain oxides C60, C70, HC60 and HC70, and the carbon-chain anion C4H-. The typical RMS brightness temperature noise levels we achieved are approx. 1 mK at around 20 GHz

    Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL

    Get PDF
    New laboratory data of CH2_2CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH2_2CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH2_2CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH2_2CHCN in the ground state is (3.0±\pm0.9)x1015^{15} cm2^{-2}. We report on the first interstellar detection of transitions in the v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. Column density and rotational and vibrational temperatures for CH2_2CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey. Moreover, we present the detection of methyl isocyanide (CH3_3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2_2CHNC) and give column density ratios between the cyanide and isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table

    Ethyl cyanide on Titan: Spectroscopic detection and mapping using ALMA

    Get PDF
    We report the first spectroscopic detection of ethyl cyanide (C2_2H5_5CN) in Titan's atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter array (ALMA). The presence of C2_2H5_5CN in Titan's ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C2_2H5_5CNH+^+. Here we report the detection of 27 rotational lines from C2_2H5_5CN (in 19 separate emission features detected at >3σ>3\sigma confidence), in the frequency range 222-241 GHz. Simultaneous detections of multiple emission lines from HC3_3N, CH3_3CN and CH3_3CCH were also obtained. In contrast to HC3_3N, CH3_3CN and CH3_3CCH, which peak in Titan's northern (spring) hemisphere, the emission from C2_2H5_5CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C2_2H5_5CN. Radiative transfer models show that most of the C2_2H5_5CN is concentrated at altitudes 300-600 km, suggesting production predominantly in the mesosphere and above. Vertical column densities are found to be in the range (2-5)×1014\times10^{14} cm2^{-2}.Comment: Published in 2015, ApJL, 800, L1

    Search for the QCD Critical Point: Higher Moments of Net-proton Multiplicity Distributions

    Full text link
    Higher moments of event-by-event net-proton multiplicity distributions have been applied to search for the QCD critical point. Model results are used to provide a baseline for this search. The measured moment products, κσ2\kappa\sigma^2 and SσS\sigma of net-proton distributions, which are directly connected to the thermodynamical baryon number susceptibility ratio in Lattice QCD and Hadron Resonance Gas (HRG) model, are compared to the transport and thermal model results. We argue that a non-monotonic dependence of κσ2\kappa \sigma^2 and SσS \sigma as a function of beam energy can be used to search for the QCD critical point.Comment: 7 pages, 3 figures. CPOD 2010 Proceeding

    The BSUIN project

    Get PDF
    Baltic Sea Underground Innovation Network (BSUIN) is an European Union funded project that extends capabilities of underground laboratories. The aim of the project is to join efforts in making the underground laboratories in the Baltic Sea Region’s more accessible for innovation, business development and science by improving the availability of information about the underground facilities, service offerings, user experience, safety and marketing.The development of standards for the characterization of underground laboratories will allow to compared them with each other. This will help you choose the best places for physical measurements such as neutrino physics or searching for dark matter. The project concerns laboratories where so far no measurements have been made, and even undergrounds where there are no organized laboratories yet.The description of the BSUIN project and the first results of characterization of natural radioactive background in underground laboratories will be presented ˙ The BSUIN Project is funded by Interreg Baltic Sea funding cooperation [2]

    Interferometric Imaging of Titan's HC<sub>3</sub>N, H<sup>13</sup>CCCN, and HCCC<sup>15</sup>N

    Get PDF
    We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H13^{13}CCCN and HCCC15^{15}N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in May 2017. The first high-resolution map of HC3_3N in its v7=1v_7=1 vibrationally excited state is also presented, revealing a unique snapshot of the global HC3_3N distribution, free from the strong optical depth effects that adversely impact the ground-state (v=0v=0) map. The HC3_3N emission is found to be strongly enhanced over Titan's south pole (by a factor of 5.7 compared to the north pole), consistent with rapid photochemical loss of HC3_3N from the summer hemisphere combined with production and transport to the winter pole since the April 2015 ALMA observations. The H13^{13}CCCN/HCCC15^{15}N flux ratio is derived at the southern HC3_3N peak, and implies an HC3_3N/HCCC15^{15}N ratio of 67±1467\pm14. This represents a significant enrichment in 15^{15}N compared with Titan's main molecular nitrogen reservoir, which has a 14^{14}N/15^{15}N ratio of 167, and confirms the importance of photochemistry in determining the nitrogen isotopic ratio in Titan's organic inventory.Comment: Accepted for publication in ApJL, May 201

    LAGUNA in Polkowice-Sieroszowice mine in Poland

    Get PDF
    The Polkowice–Sieroszowice mine in one of the seven candidates for the future pan-European underground laboratory studied in the framework of the LAGUNA project. We review the evidence that from the point of view of geology, long-term plans for the mine and existing infrastructure, and support of the authorities this is a perfect place to host the 100 kton liquid argon detector GLACIER
    corecore