464 research outputs found

    Identification of Muscle-Specific MicroRNAs in Serum of Muscular Dystrophy Animal Models: Promising Novel Blood-Based Markers for Muscular Dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK) is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs) are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMDJ), by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206) are increased in both mdx and CXMDJ. Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy

    Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Along with high affinity binding of epibatidine (<it>K</it><sub>d1</sub>≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (<it>K</it><sub>d2</sub>≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [<sup>3</sup>H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites.</p> <p>Results</p> <p>Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [<sup>3</sup>H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [<sup>3</sup>H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates.</p> <p>Conclusions</p> <p>Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches.</p

    The predictive value of p53, p53R2, and p21 for the effect of chemoradiation therapy on oesophageal squamous cell carcinoma

    Get PDF
    The p53 family regulates cell-cycle arrest, triggers apoptosis or is involved in repair of DNA damage. In the present study, we analysed the expression of some p53 family proteins and their responses to chemoradiation therapy (CRT) in cases of oesophageal squamous cell carcinoma (ESCC). We immunohistochemically investigated the relationship between p53, p53R2, and p21 expression in biopsy specimens of untreated primary tumours and their clinical and histological responses to CRT in 62 patients with ESCC. Chemoradiation therapy consisted of 5-fluorouracil plus cisplatin and 40 Gy of radiation. The rates of clinical and histological responses (complete or partial) to CRT were 71.0% (clinical) and 52.8% (histological). The rate of positive expression was 43.5% for p53, 37.1% for p53R2, and 54.8% for p21 expression. Statistically significant correlations were found between p53 or p53R2 expression and favourable response to CRT (P=0.0001 or 0.041 clinical, P=0.016 or 0.0018 histological, respectively). Furthermore, in p53-negative tumours, CRT was more effective in tumours with p53R2 negative expression than those with p53R2 positive expression (P=0.0014). We demonstrated that the negative expression of p53 and p53R2 expression was closely related to the effect of CRT and should predict the CRT outcome in patients with ESCC

    Valproic acid and fatalities in children: a review of individual case safety reports in VigiBase

    Get PDF
    Introduction Valproic acid is an effective first line drug for the treatment of epilepsy. Hepatotoxicity is a rare and potentially fatal adverse reaction for this medicine. Objective Firstly to characterise valproic acid reports on children with fatal outcome and secondly to determine reporting over time of hepatotoxicity with fatal outcome. Methods Individual case safety reports (ICSRs) for children ≤17 years with valproic acid and fatal outcome were retrieved from the WHO Global ICSR database, VigiBase, in June 2013. Reports were classified into hepatotoxic reactions or other reactions. Shrinkage observed-to-expected ratios were used to explore the relative reporting trend over time and for patient age. The frequency of polytherapy, i.e. reports with more than one antiepileptic medicine, was investigated. Results There have been 268 ICSRs with valproic acid and fatal outcome in children, reported from 25 countries since 1977. A total of 156 fatalities were reported with hepatotoxicity, which has been continuously and disproportionally reported over time. There were 31 fatalities with pancreatitis. Other frequently reported events were coma/encephalopathy, seizures, respiratory disorders and coagulopathy. Hepatotoxicity was disproportionally and most commonly reported in children aged 6 years and under (104/156 reports) but affected children of all ages. Polytherapy was significantly more frequently reported for valproic acid with fatal outcome (58%) compared with non-fatal outcome (34%). Conclusion Hepatotoxicity remains a considerable problem. The risk appears to be greatest in young children (6 years and below) but can occur at any age. Polytherapy is commonly reported and seems to be a risk factor for hepatotoxicity, pancreatitis and other serious adverse drug reactions with valproic acid

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Estimating stable isotope turnover rates of epidermal mucus and dorsal muscle for an omnivorous fish using a diet-switch experiment

    Get PDF
    © 2018, The Author(s). Stable isotope (SI) analysis studies rely on knowledge of isotopic turnover rates and trophic-step discrimination factors. Epidermal mucus (‘mucus’) potentially provides an alternative SI ‘tissue’ to dorsal muscle that can be collected non-invasively and non-destructively. Here, a diet-switch experiment using the omnivorous fish Cyprinus carpio and plant- and fish-based formulated feeds compared SI data between mucus and muscle, including their isotopic discrimination factors and turnover rates (as functions of time T and mass G, at isotopic half-life (50) and equilibrium (95)). Mucus isotope data differed significantly and predictively from muscle data. The fastest δ13C turnover rate was for mucus in fish on the plant-based diet (T50: 17 days, T95: 74 days; G50: 1.08(BM), G95: 1.40(BM)). Muscle turnover rates were longer for the same fish (T50: 44 days, T95: 190 days; G50: 1.13(BM), G95: 1.68(BM)). Longer half-lives resulted in both tissues from the fish-based diet. δ13C discrimination factors varied by diet and tissue (plant-based: 3.11–3.28‰; fishmeal: 1.28–2.13‰). Mucus SI data did not differ between live and frozen fish. These results suggest that mucus SI half-lives provide comparable data to muscle, and can be used as a non-destructive alternative tissue in fish-based SI studies

    Cell-Autonomous Alterations in Dendritic Arbor Morphology and Connectivity Induced by Overexpression of MeCP2 in Xenopus Central Neurons In Vivo

    Get PDF
    Methyl CpG binding protein-2 (MeCP2) is an essential epigenetic regulator in human brain development. Mutations in the MeCP2 gene have been linked to Rett syndrome, a severe X-linked progressive neurodevelopmental disorder, and one of the most common causes of mental retardation in females. MeCP2 duplication and triplication have also been found to affect brain development, indicating that both loss of function and gain in MeCP2 dosage lead to similar neurological phenotypes. Here, we used the Xenopus laevis visual system as an in vivo model to examine the consequence of increased MeCP2 expression during the morphological maturation of individual central neurons in an otherwise intact brain. Single-cell overexpression of wild-type human MeCP2 was combined with time-lapse confocal microscopy imaging to study dynamic mechanisms by which MeCP2 influences tectal neuron dendritic arborization. Analysis of neurons co-expressing DsRed2 demonstrates that MeCP2 overexpression specifically interfered with dendritic elaboration, decreasing the rates of branch addition and elimination over a 48 hour observation period. Moreover, dynamic analysis of neurons co-expressing wt-hMeCP2 and PSD95-GFP revealed that even though neurons expressing wt-hMeCP2 possessed significantly fewer dendrites and simpler morphologies than control neurons at the same developmental stage, postsynaptic site density in wt-hMeCP2-expressing neurons was similar to controls and increased at a rate higher than controls. Together, our in vivo studies support an early, cell-autonomous role for MeCP2 during the morphological differentiation of neurons and indicate that perturbations in MeCP2 gene dosage result in deficits in dendritic arborization that can be compensated, at least in part, by synaptic connectivity changes

    MET is required for the recruitment of anti-tumoural neutrophils

    Get PDF
    Mutations or amplification of the MET proto-oncogene are involved in the pathogenesis of several tumours, which rely on the constitutive engagement of this pathway for their growth and survival. However, MET is expressed not only by cancer cells but also by tumour-associated stromal cells, although its precise role in this compartment is not well characterized. Here we show that MET is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor (HGF). Met deletion in mouse neutrophils enhances tumour growth and metastasis. This phenotype correlates with reduced neutrophil infiltration to both the primary tumour and metastatic sites. Similarly, Met is necessary for neutrophil transudation during colitis, skin rash or peritonitis. Mechanistically, Met is induced by tumour-derived tumour necrosis factor (TNF)-α or other inflammatory stimuli in both mouse and human neutrophils. This induction is instrumental for neutrophil transmigration across an activated endothelium and for inducible nitric oxide synthase production upon HGF stimulation. Consequently, HGF/MET-dependent nitric oxide release by neutrophils promotes cancer cell killing, which abates tumour growth and metastasis. After systemic administration of a MET kinase inhibitor, we prove that the therapeutic benefit of MET targeting in cancer cells is partly countered by the pro-tumoural effect arising from MET blockade in neutrophils. Our work identifies an unprecedented role of MET in neutrophils, suggests a potential ‘Achilles’ heel’ of MET-targeted therapies in cancer, and supports the rationale for evaluating anti-MET drugs in certain inflammatory diseases
    • …
    corecore