457 research outputs found

    The Effect of Extra Virgin Olive Oil on LOX-1 and COX-2 in High Fat Diet Rats

    Get PDF
    Background: High fat diet is a diet containing large amounts of fat consistently, the increase dietary fat and cholesterol which have a key role in growing health problems. Extra virgin olive oil associated with prevention of LDL oxidation, beneficial changes in lipid ratios and low risk for CHD.Objective: to determine the anti-inflammatory effect of extra virgin olive oil extract to levels of COX-2 and LOX-1 in the blood in rats induced by high fat dietMethods: This research is an experimental study that used randomized posttest only control group design. 30 Wistar rats which were divided into five groups: group of control (-) which received normal diet and group of control (+) which received high fat diet without EVOO treatment and three high fat diet groups treated by EVOO 1 mL/kg/day, 2 mL/kg/day and 3 mL/kg/day orally for 2 months. The blood was collected from eyes rats and serum separation by centrifuge. COX-2, LOX-1 concentration was measured by the enzyme linked immunosorbent assay (ELISA).Results: The result of this study showed higher COX-2 concentrations in groups treated with EVOO than control group. COX-2 serum levels of negative control where significantly lower than those of rats treated with 2 ml/kg/day (p = 0.047) and 3 ml/kg/day EVOO (p = 0.014). The COX-2 serum levels of group received 1 ml/kg/day were significantly lower than those of rats received 3 ml/kg/day EVOO (p = 0.027). And showed not significantly deferent among all groups (p = 0.570).Conclusions: The conclusion of this study has showed that extra virgin olive oil extract might have minor anti inflammatory and antioxidant effect in rats

    Structural and magnetic study of the iron cores in iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol®

    Get PDF
    Iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol® was investigated by high resolution transmission electron microscopy (HRTEM), X-ray diffraction, thermogravimetry, electron magnetic resonance (EMR) spectroscopy, dc magnetization measurements and 57Fe Mössbauer spectroscopy to get novel information about the structural arrangement of the iron core. The Ferrifol® Mössbauer spectra measured in the range from 295 to 90 K demonstrated non-Lorentzian two-peak pattern. These spectra were better fitted using a superposition of 5 quadrupole doublets with the same line width. The obtained Mössbauer parameters were different and an unusual line broadening with temperature decrease was observed. Measurements of the Ferrifol® Mössbauer spectra from 60 to 20 K demonstrated a slow decrease of magnetic relaxation in the iron core. Zero-field-cooled and field-cooled magnetization measurements revealed a blocking temperature at ~33 K and paramagnetic state of the Ferrifol® iron core at higher temperatures. Isothermal magnetization measurements at 5 K show that the saturation magnetic moment is ~0.31 emu/g. X-band EMR spectroscopy measurements revealed the presence of different magnetic species in the sample. Transmission electron microscopy demonstrated that the size of the iron cores in Ferrifol® is in the range 2–6 nm. The lattice periodicity in these iron cores, measured on the HRTEM images, appeared to be vary in the range 2.2–2.7 Å. This can be best understood as sets of close packed O(OH) layers in ferrihydrite cores without long range correlation

    Interpretation of the Total Magnetic Field Anomalies Measured by the CHAMP Satellite Over a Part of Europe and the Pannonian Basin

    Get PDF
    In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals

    Inversion of Magnetic Measurements of the CHAMP Satellite Over the Pannonian Basin

    Get PDF
    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5 x 0.5, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude were downward continued to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We INTERPRET THAT the magnetic anomaly WAS produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks

    Mössbauer characterization of microbially mediated iron and manganese ores of variable geological ages

    Get PDF
    A combination of various techniques was applied to investigate the mineralogy of the Neoproterozoic Urucum iron and manganese deposit (Brazil) and Carboniferous and Permian manganese carbonate deposits (China). The examined deposits exhibited signs of microbial mediation from Fe and Mn bacteria and cyanobacteria. The studied samples showed diversity in their composition and particle size. Probes from Urucum deposit revealed that the rocks consist mainly of hematite, showing Mn substitution which reflects the oxidation of Mn on the active surface of Fe-rich biomat. Nanominerals occurring in significant concentration also supported the microbial contribution to the formation of these ores. Representative samples of Neoproterozoic and Permian deposits showed considerable amount of mixed carbonates with variable composition. 57Fe Mössbauer spectroscopy analysis supported by X-ray diffraction and transmission electron microscopy data provided a detailed characterization of Fe-rich mineral phases of the samples, including metal ratio outlooks, particle size dimension and presence and type of impurities. Integrity and high resolution of the methods allowed to determine new features of the samples reflecting important signatures of microbial activity revealing the biogeochemistry of the biomat formation

    Structural and Magnetic Study of the Iron Cores in Iron(III)-Polymaltose Pharmaceutical Ferritin Analogue Ferrifol®

    Full text link
    Iron(III)-polymaltose pharmaceutical ferritin analogue Ferrifol® was investigated by high resolution transmission electron microscopy (HRTEM), X-ray diffraction, thermogravimetry, electron magnetic resonance (EMR) spectroscopy, direct current magnetization measurements and 57Fe Mössbauer spectroscopy to get novel information about the structural arrangement of the iron core. The Ferrifol® Mössbauer spectra measured in the range from 295 K to 90 K demonstrated non-Lorentzian two-peak pattern. These spectra were better fitted using a superposition of 5 quadrupole doublets with the same line width. The obtained Mössbauer parameters were different and an unusual line broadening with temperature decrease was observed. Measurements of the Ferrifol® Mössbauer spectra from 60 K to 20 K demonstrated a slow decrease of magnetic relaxation in the iron core. Zero-field-cooled and field-cooled magnetization measurements revealed a blocking temperature at ~33 K and a paramagnetic state of the Ferrifol® iron core at higher temperatures. Isothermal magnetization measurements at 5 K show that the saturation magnetic moment is ~0.31 emu/g. X-band EMR spectroscopy measurements revealed the presence of different magnetic species in the sample. Transmission electron microscopy demonstrated that the size of the iron cores in Ferrifol® is in the range 2–6 nm. The lattice periodicity in these iron cores, measured on the HRTEM images, vary in the range 2.2–2.7 Å. This can be best understood as sets of close packed O(OH) layers in ferrihydrite cores without long range correlation. © 2020 Elsevier Inc.The authors wish to thank Prof. Ferenc Simon (Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary) for making available the applied spectrometer for recording the EMR spectra and Dr. A.V. Chukin (Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russian Federation) for XRD measurements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project No FEUZ-2020-0060, and Act 211 of the Government of the Russian Federation, contract No 02.A03.21.0006. V.K.K. was supported by the János Bolyai Postdoctoral Fellowship of the Hungarian Academy of Sciences and the ÚNKP-19-4 New National Excellence Program of the Ministry for Innovation and Technology. HRTEM facility at the Centre for Energy Research was granted by the European Structural and Investment Funds, grant no. VEKOP-2.3.3-15-2016-00002. This work was in part supported by the Hungarian National Research, Development and Innovation Office – NKFIH (K115784, K115913 and K134770). This work was carried out within the Agreement of Cooperation between the Ural Federal University (Ekaterinburg) and the Eötvös Loránd University (Budapest)

    Mjerenje s dobrom statistikom emisije dvaju fotona i dileptona pri proton-proton raspršenju na 190 MeV

    Get PDF
    The first high-statistics measurement of double-photon and dilepton yields in proton-proton scattering below the pion threshold has been performed. The data obtained will allow a detailed study of the proton-proton interaction.Izveli smo prvo mjerenje s dobrom statistikom emisije dvaju fotona i dileptona pri proton-proton raspršenju na energiji ispod praga za produkciju piona. Dobiveni podaci omogućuju dodatno proučavanje svojstava međudjelovanja protona

    Mjerenje s dobrom statistikom emisije dvaju fotona i dileptona pri proton-proton raspršenju na 190 MeV

    Get PDF
    The first high-statistics measurement of double-photon and dilepton yields in proton-proton scattering below the pion threshold has been performed. The data obtained will allow a detailed study of the proton-proton interaction.Izveli smo prvo mjerenje s dobrom statistikom emisije dvaju fotona i dileptona pri proton-proton raspršenju na energiji ispod praga za produkciju piona. Dobiveni podaci omogućuju dodatno proučavanje svojstava međudjelovanja protona

    Arbitrary rotation and entanglement of flux SQUID qubits

    Full text link
    We propose a new approach for the arbitrary rotation of a three-level SQUID qubit and describe a new strategy for the creation of coherence transfer and entangled states between two three-level SQUID qubits. The former is succeeded by exploring the coupled-uncoupled states of the system when irradiated with two microwave pulses, and the latter is succeeded by placing the SQUID qubits into a microwave cavity and used adiabatic passage methods for their manipulation.Comment: Accepted for publication in Phys. Rev.
    corecore