420 research outputs found

    Discovery of Stable and Selective Antibody Mimetics from Combinatorial Libraries of Polyvalent, Loop-Functionalized Peptoid Nanosheets.

    Get PDF
    The ability of antibodies to bind a wide variety of analytes with high specificity and high affinity makes them ideal candidates for therapeutic and diagnostic applications. However, the poor stability and high production cost of antibodies have prompted exploration of a variety of synthetic materials capable of specific molecular recognition. Unfortunately, it remains a fundamental challenge to create a chemically diverse population of protein-like, folded synthetic nanostructures with defined molecular conformations in water. Here we report the synthesis and screening of combinatorial libraries of sequence-defined peptoid polymers engineered to fold into ordered, supramolecular nanosheets displaying a high spatial density of diverse, conformationally constrained peptoid loops on their surface. These polyvalent, loop-functionalized nanosheets were screened using a homogeneous Förster resonance energy transfer (FRET) assay for binding to a variety of protein targets. Peptoid sequences were identified that bound to the heptameric protein, anthrax protective antigen, with high avidity and selectivity. These nanosheets were shown to be resistant to proteolytic degradation, and the binding was shown to be dependent on the loop display density. This work demonstrates that key aspects of antibody structure and function-the creation of multivalent, combinatorial chemical diversity within a well-defined folded structure-can be realized with completely synthetic materials. This approach enables the rapid discovery of biomimetic affinity reagents that combine the durability of synthetic materials with the specificity of biomolecular materials

    High pressure transport properties of the topological insulator Bi2Se3

    Full text link
    We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 towards increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3

    Specific Heat Discontinuity, deltaC, at Tc in BaFe2(As0.7P0.3)2 - Consistent with Unconventional Superconductivity

    Full text link
    We report the specific heat discontinuity, deltaC/Tc, at Tc = 28.2 K of a collage of single crystals of BaFe2(As0.7P0.3)2 and compare the measured value of 38.5 mJ/molK**2 with other iron pnictide and iron chalcogenide (FePn/Ch) superconductors. This value agrees well with the trend established by Bud'ko, Ni and Canfield who found that deltaC/Tc ~ a*Tc**2 for 14 examples of doped Ba1-xKxFe2As2 and BaFe2-xTMxAs2, where the transition metal TM=Co and Ni. We extend their analysis to include all the FePn/Ch superconductors for which deltaC/Tc is currently known and find deltaC/Tc ~ a*Tc**1.9 and a=0.083 mJ/molK**4. A comparison with the elemental superconductors with Tc>1 K and with A-15 superconductors shows that, contrary to the FePn/Ch superconductors, electron-phonon-coupled conventional superconductors exhibit a significantly different dependence of deltaC on Tc, namely deltaC/Tc ~ Tc**0.9. However deltaC/gamma*Tc appears to be comparable in all three classes (FePn/Ch, elemental and A-15) of superconductors with, e. g., deltaC/gamma*Tc=2.4 for BaFe2(As0.7P0.3)2. A discussion of the possible implications of these phenomenological comparisons for the unconventional superconductivity believed to exist in the FePn/Ch is given.Comment: some disagreement in reference and footnote numbering with the published versio

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe_(2-x)TM_(x)As2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity

    Full text link
    The electronic structure and physical properties of the pnictide compound families REREOFeAs (RERE = La, Ce, Pr, Nd, Sm), AAFe2_{2}As2_{2} (AA = Ca, Sr, Ba, Eu), LiFeAs and FeSe are quite similar. Here, we focus on the members of the AAFe2_{2}As2_{2} family whose sample composition, quality and single crystal growth are better controllable compared to the other systems. Using first principles band structure calculations we focus on understanding the relationship between the crystal structure, charge doping and magnetism in AAFe2_{2}As2_{2} systems. We will elaborate on the tetragonal to orthorhombic structural distortion along with the associated magnetic order and anisotropy, influence of doping on the AA site as well as on the Fe site, and the changes in the electronic structure as a function of pressure. Experimentally, we investigate the substitution of Fe in SrFe2−xTMx_{2-x}TM_{x}As2_{2} by other 3dd transition metals, TMTM = Mn, Co, Ni. In contrast to a partial substitution of Fe by Co or Ni (electron doping) a corresponding Mn partial substitution does not lead to the supression of the antiferromagnetic order or the appearance of superconductivity. Most calculated properties agree well with the measured properties, but several of them are sensitive to the As zz position. For a microscopic understanding of the electronic structure of this new family of superconductors this structural feature related to the Fe-As interplay is crucial, but its correct ab initio treatment still remains an open question.Comment: 27 pages, single colum

    Involvement of Hypoxia-Inducible Factor-1 in the Inflammatory Responses of Human LAD2 Mast Cells and Basophils

    Get PDF
    We recently showed that hypoxia-inducible factor 1 (HIF-1) plays a crucial role in the pro-allergic functions of human basophils by transcriptional control of energy metabolism via glycolysis as well as directly triggering expression of the angiogenic cytokine vascular endothelium growth factor (VEGF). Here, we investigated HIF-1 involvement in controlling the synthesis of angiogenic and inflammatory cytokines from various human effector cells stimulated by IgE-dependent or innate immune triggers. Purified primary human basophils, LAD2 human mast cells and THP-1 human myeloid cells were used for investigations of FcΔRI and Toll-like receptor (TLR) ligand-induced responses. In contrast to basophils, LAD2 mast cells expressed background levels of HIF-1α, which was largely independent of the effects of stem cell factor (SCF). Both mast cells and basophils expressed TLR2 and 4, albeit weakly compared to THP-1 cells. Cytokine production in mast cells following TLR ligand stimulation was markedly reduced by HIF-1α knockdown in LAD2 mast cells. In contrast, although HIF-1 is involved in IgE-mediated IL-4 secretion from basophils, it is not clearly induced by peptidoglycan (PGN). HIF-1α accumulation is critical for sustaining human allergic effector cell survival and function. This transcription complex facilitates generation of both pro-angiogenic and inflammatory cytokines in mast cells but has a differential role in basophil stimulation comparing IgE-dependent triggering with innate immune stimuli

    Downsizing a human inflammatory protein to a small molecule with equal potency and functionality

    Get PDF
    A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weigh

    Selective complexation of divalent cations by a cyclic α,ÎČ-peptoid hexamer: a spectroscopic and computational study

    Get PDF
    We describe the qualitative and quantitative analysis of the complexation properties towards cations of a cyclic peptoid hexamer composed of alternating α- and ÎČ-peptoid monomers, which bear exclusively chiral (S)-phenylethyl side chains (spe) that have no noticeable chelating properties. The binding of a series of monovalent and divalent cations was assessed by 1H NMR, circular dichroism, fluorescence and molecular modelling. In contrast to previous studies on cations binding by 18-membered α-cyclopeptoid hexamers, the 21-membered cyclopeptoid cP1 did not complex monovalent cations (Na+, K+, Ag+) but showed selectivity for divalent cations (Ca2+, Ba2+, Sr2+ and Mg2+). Hexacoordinated C-3 symmetrical complexes were demonstrated for divalent cations with ionic radii around 1 Å (Ca2+ and Ba2+), while 5-coordination is preferred for divalent cations with larger (Ba2+) or smaller ionic radii (Mg2+)

    P2X7 receptors induce degranulation in human mast cells.

    Get PDF
    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αÎČmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated
    • 

    corecore