409 research outputs found

    Formative peer assessment in a CSCL environment

    Get PDF
    In this case study our aim was to gain more insight in the possibilities of qualitative formative peer assessment in a computer supported collaborative learning (CSCL) environment. An approach was chosen in which peer assessment was operationalised in assessment assignments and assessment tools that were embedded in the course material. The course concerned a higher education case-based virtual seminar, in which students were asked to conduct research and write a report in small multidisciplinary teams. The assessment assignments contained the discussion of assessment criteria, the assessment of a group report of a fellow group, and writing an assessment report. A list of feedback rules was one of the assessment tools. A qualitative oriented study was conducted, focussing on the attitude of students towards peer assessment and practical use of peer assessment assignments and tools. Results showed that students’ attitude towards peer assessment was positive and that assessment assignments had added value. However, not all students fulfilled all assessment assignments. Recommendations for implementation of peer assessment in CSCL environments as well as suggestions for future research are discussed

    Machine and human observable differences in groups’ collaborative problem-solving behaviours

    Get PDF
    This paper contributes to our understanding of how to design learning analytics to capture and analyse collaborative problem-solving (CPS) in practice-based learning activities. Most research in learning analytics focuses on student interaction in digital learning environments, yet still most learning and teaching in schools occurs in physical environments. Investigation of student interaction in physical environments can be used to generate observable differences among students, which can then be used in the design and implementation of Learning Analytics. Here, we present several original methods for identifying such differences in groups CPS behaviours. Our data set is based on human observation, hand position (fiducial marker) and heads direction (face recognition) data from eighteen students working in six groups of three. The results show that the high competent CPS groups spend an equal distribution of time on their problem-solving and collaboration stages. Whereas, the low competent CPS groups spend most of their time in identifying knowledge and skill deficiencies only. Moreover, as machine observable data shows, high competent CPS groups present symmetrical contributions to the physical tasks and present high synchrony and individual accountability values. The findings have significant implications on the design and implementation of future learning analytics systems

    Diagnosing collaboration in practice-based learning: Equality and intra-individual variability of physical interactivity

    Get PDF
    Collaborative problem solving (CPS), as a teaching and learning approach, is considered to have the potential to improve some of the most important skills to prepare students for their future. CPS often differs in its nature, practice, and learning outcomes from other kinds of peer learning approaches, including peer tutoring and cooperation; and it is important to establish what identifies collaboration in problem-solving situations. The identification of indicators of collaboration is a challenging task. However, students physical interactivity can hold clues of such indicators. In this paper, we investigate two non-verbal indexes of student physical interactivity to interpret collaboration in practice-based learning environments: equality and intra-individual variability. Our data was generated from twelve groups of three Engineering students working on open-ended tasks using a learning analytics system. The results show that high collaboration groups have member students who present high and equal amounts of physical interactivity and low and equal amounts of intra-individual variability

    Learning and innovative elements of strategy adoption rules expand cooperative network topologies

    Get PDF
    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoners Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.Comment: 14 pages, 3 Figures + a Supplementary Material with 25 pages, 3 Tables, 12 Figures and 116 reference

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Contributions to early HIV diagnosis among patients linked to care vary by testing venue

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Early HIV diagnosis reduces transmission and improves health outcomes; screening in non-traditional settings is increasingly advocated. We compared test venues by the number of new diagnoses successfully linked to the regional HIV treatment center and disease stage at diagnosis.</p> <p>Methods</p> <p>We conducted a retrospective cohort study using structured chart review of newly diagnosed HIV patients successfully referred to the region's only HIV treatment center from 1998 to 2003. Demographics, testing indication, risk profile, and initial CD4 count were recorded.</p> <p>Results</p> <p>There were 277 newly diagnosed patients meeting study criteria. Mean age was 33 years, 77% were male, and 46% were African-American. Median CD4 at diagnosis was 324. Diagnoses were earlier via partner testing at the HIV treatment center (N = 8, median CD4 648, p = 0.008) and with universal screening by the blood bank, military, and insurance companies (N = 13, median CD4 483, p = 0.05) than at other venues. Targeted testing by health care and public health entities based on patient request, risk profile, or patient condition lead to later diagnosis.</p> <p>Conclusion</p> <p>Test venues varied by the number of new diagnoses made and the stage of illness at diagnosis. To improve the rate of early diagnosis, scarce resources should be allocated to maximize the number of new diagnoses at screening venues where diagnoses are more likely to be early or alter testing strategies at test venues where diagnoses are traditionally made late. Efforts to improve early diagnosis should be coordinated longitudinally on a regional basis according to this conceptual paradigm.</p

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    Get PDF
    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with learning. Initially, cognitive load theory's view of human cognitive architecture was assumed to apply to all categories of information. Based on Geary's (Educational Psychologist 43, 179-195 2008; 2011) evolutionary account of educational psychology, this interpretation of human cognitive architecture requires amendment. Working memory limitations may be critical only when acquiring novel information based on culturally important knowledge that we have not specifically evolved to acquire. Cultural knowledge is known as biologically secondary information. Working memory limitations may have reduced significance when acquiring novel

    Synchrony and Physiological Arousal Increase Cohesion and Cooperation in Large Naturalistic Groups

    Get PDF
    Separate research streams have identified synchrony and arousal as two factors that might contribute to the effects of human rituals on social cohesion and cooperation. But no research has manipulated these variables in the field to investigate their causal – and potentially interactive – effects on prosocial behaviour. Across four experimental sessions involving large samples of strangers, we manipulated the synchronous and physiologically arousing affordances of a group marching task within a sports stadium. We observed participants’ subsequent movement, grouping, and cooperation via a camera hidden in the stadium’s roof. Synchrony and arousal both showed main effects, predicting larger groups, tighter clustering, and more cooperative behaviour in a free-rider dilemma. However, synchrony and arousal interacted on measures of clustering and cooperation: such that synchrony only encouraged closer clustering — and encouraged greater cooperation—when paired with physiological arousal. The research has implications for understanding the nature and co-occurrence of synchrony and physiological arousal in rituals around the world. It also represents the first use of real-time spatial tracking as a precise and naturalistic method of simulating collective rituals

    Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH)

    Get PDF
    Phonological skills are enhanced by music training, but the mechanisms enabling this cross-domain enhancement remain unknown. To explain this cross-domain transfer, we propose a precise auditory timing hypothesis (PATH) whereby entrainment practice is the core mechanism underlying enhanced phonological abilities in musicians. Both rhythmic synchronization and language skills such as consonant discrimination, detection of word and phrase boundaries, and conversational turn-taking rely on the perception of extremely fine-grained timing details in sound. Auditory-motor timing is an acoustic feature which meets all five of the pre-conditions necessary for cross-domain enhancement to occur (Patel, 2011, 2012, 2014). There is overlap between the neural networks that process timing in the context of both music and language. Entrainment to music demands more precise timing sensitivity than does language processing. Moreover, auditory-motor timing integration captures the emotion of the trainee, is repeatedly practiced, and demands focused attention. The PATH predicts that musical training emphasizing entrainment will be particularly effective in enhancing phonological skills
    • 

    corecore