36 research outputs found

    Pineapple Lectin AcmJRL Binds SARS-CoV-2 Spike Protein in a Carbohydrate-Dependent Fashion

    Get PDF
    The highly glycosylated spike protein of SARS-CoV-2 is essential for infection and constitutes a prime target for antiviral agents and vaccines. The pineapple-derived jacalin-related lectin AcmJRL is present in the medication bromelain in significant quantities and has previously been described to bind mannosides. Here, we performed a large ligand screening of AcmJRL by glycan array analysis, quantified the interaction with carbohydrates and validated high-mannose glycans as preferred ligands. Because the SARS-CoV-2 spike protein was previously reported to carry a high proportion of high-mannose N-glycans, we tested the binding of AcmJRL to the recombinantly produced extraviral domain of spike protein. We could demonstrate that AcmJRL binds the spike protein with a low-micromolar KD in a carbohydrate-dependent fashion

    Biochemical and transcriptomic evaluation of a 3D lung organoid platform for pre-clinical testing of active substances targeting senescence

    Get PDF
    Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicininduced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing

    Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    Get PDF
    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Identification of Compounds Preventing A. fumigatus Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3

    No full text
    The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner

    Identification of Compounds Preventing <i>A. fumigatus</i> Biofilm Formation by Inhibition of the Galactosaminogalactan Deacetylase Agd3

    No full text
    The opportunistic fungus Aspergillus fumigatus causes a set of diseases ranging from allergy to lethal invasive mycosis. Within the human airways, A. fumigatus is embedded in a biofilm that forms not only a barrier against the host immune defense system, but also creates a physical barrier protecting the fungi from chemicals such as antifungal drugs. Novel therapeutic strategies aim at combining drugs that inhibit biofilm synthesis or disrupt existing biofilm with classical antimicrobials. One of the major constituents of A. fumigatus biofilm is the polysaccharide galactosaminogalactan (GAG) composed of α1,4-linked N-acetylgalactosamine, galactosamine, and galactose residues. GAG is synthesized on the cytosolic face of the plasma membrane and is extruded in the extracellular space, where it is partially deacetylated. The deacetylase Agd3 that mediates this last step is essential for the biofilm formation and full virulence of the fungus. In this work, a previously described enzyme-linked lectin assay, based on the adhesion of deacetylated GAG to negatively charged plates and quantification with biotinylated soybean agglutinin was adapted to screen microbial natural compounds, as well as compounds identified in in silico screening of drug libraries. Actinomycin X2, actinomycin D, rifaximin, and imatinib were shown to inhibit Agd3 activity in vitro. At a concentration of 100 µM, actinomycin D and imatinib showed a clear reduction in the biofilm biomass without affecting the fungal growth. Finally, imatinib reduced the virulence of A. fumigatus in a Galleria mellonella infection model in an Agd3-dependent manner

    Chromosome distribution studies in XXY karyotypes.

    No full text
    The method of 'generalised distances' was applied to characterise the relative position of the metaphase chromosomes in a population of XXY subjects (180 metaphases from 28 subjects). The most striking observation was that the presence of an extra gonosome coincided with a disturbance of the normally stable centromere-centre distribution pattern. The distribution analysis gave no clear cut evidence for the induction of gonosomal trisomy XXY by chromosome association. No significant association was observed between X and X or X and Y but there was a smaller distance between X and Y in XXY karyotypes than in XY karyotypes. As far as autosomes are concerned, the XXY karyotypes were characterised by a less central location of the acrocentrics without a clear decrease of association frequencies of these acrocentrics, and the C heterochromatin rich chromosomes were more often associated than in the XX and XY control populations. These data do not support the idea that gonosomal trisomies result from chromosome associations, but favour the hypothesis that spindle degeneration as a result of intrafollicular ageing of C heterochromatin polymorphism may be responsible for non-disjunctions

    Thioholgamide A, a New Anti-Proliferative Anti-Tumor Agent, Modulates Macrophage Polarization and Metabolism.

    Get PDF
    Natural products represent powerful tools searching for novel anticancer drugs. Thioholgamide A (thioA) is a ribosomally synthesized and post-translationally modified peptide, which has been identified as a product of Streptomyces sp. MUSC 136T. In this study, we provide a comprehensive biological profile of thioA, elucidating its effects on different hallmarks of cancer in tumor cells as well as in macrophages as crucial players of the tumor microenvironment. In 2D and 3D in vitro cell culture models thioA showed potent anti-proliferative activities in cancer cells at nanomolar concentrations. Anti-proliferative actions were confirmed in vivo in zebrafish embryos. Cytotoxicity was only induced at several-fold higher concentrations, as assessed by live-cell microscopy and biochemical analyses. ThioA exhibited a potent modulation of cell metabolism by inhibiting oxidative phosphorylation, as determined in a live-cell metabolic assay platform. The metabolic modulation caused a repolarization of in vitro differentiated and polarized tumor-promoting human monocyte-derived macrophages: ThioA-treated macrophages showed an altered morphology and a modulated expression of genes and surface markers. Taken together, the metabolic regulator thioA revealed low activities in non-tumorigenic cells and an interesting anti-cancer profile by orchestrating different hallmarks of cancer, both in tumor cells as well as in macrophages as part of the tumor microenvironment
    corecore