5 research outputs found

    Detection and Quantification of Rare Analytes in Biological Samples using Dielectrophoretic Spectroscopy

    Get PDF
    Novel techniques for Dielectrophoresis (DEP) crossover frequency calculation, positive dielectrophoretic spectroscopy and negative dielectrophoretic spectroscopy are proposed in this dissertation. A novel automated immunoassay based on negative dielectrophoretic spectroscopy for the detection and quantification of rare-analytes in a biological sample is also presented. All of these techniques are based on a custom made automated software “DEP spectroscopy application” for Microsoft Windows that was designed and developed for this research project. The techniques for DEP crossover frequency calculation and dielectrophoretic spectroscopy were validated through experiments with blue colored polystyrene beads with 1000 nm diameter. The techniques for positive dielectrophoretic spectroscopy and negative dielectrophoretic spectroscopy were validated through experiments with fluorescent polystyrene beads with 500 nm diameter. An increase in negative DEP force was observed in response to the increase in the frequency of the applied electric field. This increased DEP force resulted in higher speed of repulsion of functionalized polystyrene beads from the edge of the electrode. The speed of repulsion was measured for 0%, 0.8%, 50% and 100% conjugation of avidin with biotin functionalized polystyrene beads with the automated software through real-time image processing. A significant difference in the velocity of the beads was observed among different avidin-biotin conjugation concentrations that can be used to quantify rare analytes in a biological sample. Using this technique, as little as 80 molecules of avidin per biotin functionalized bead can be detected in a sample. This technology can be applied to the detection and quantification of rare analytes that can be useful in the diagnosis and treatment of diseases like cancer and myocardial infarction with the use of polystyrene beads functionalized with antibodies for the target biomarkers.COMSATS Institute of Information Technology (CIIT), Islamabad, Pakista

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Certainty-Equivalence-Based Sensorless Robust Sliding Mode Control for Maximum Power Extraction of an Uncertain Photovoltaic System

    No full text
    Photovoltaic (PV) arrays and their electronic converters are subject to various environmental disturbances and component-related faults that affect their normal operations and result in a considerable energy loss. Therefore, it is ever demanding to design such closed-loop operating algorithms that tolerate faults, present acceptable performance, and avoid wear and tear in the systems. In this work, the core objective is to extract maximum power from a PV array subject to environmental disturbances and plant uncertainties. The system is considered under input channel uncertainties (i.e., faults) along with variable resistive load and charging stations. A neuro-fuzzy network (NFN)-based reference voltage is generated to extract maximum power while considering variable temperature and irradiance as inputs. Furthermore, the estimated reference is tracked by the actual PV voltage under two types of controllers: certainty-equivalence-based robust sliding mode (CERSMC) and certainty-equivalence-based robust integral sliding mode (CERISMC). These strategies benefit from improving the robustness against faults (disturbances). The proposed methods use the inductor current, which is recovered via the velocity observer and the flatness property of nonlinear systems. The system’s stability is proven in the form of very appealing theorems. These claims are validated by the simulation results, which are carried out in a MATLAB environment

    Elective surgical services need to start planning for summer pressures

    No full text

    Evaluation of prognostic risk models for postoperative pulmonary complications in adult patients undergoing major abdominal surgery: a systematic review and international external validation cohort study

    Get PDF
    Background Stratifying risk of postoperative pulmonary complications after major abdominal surgery allows clinicians to modify risk through targeted interventions and enhanced monitoring. In this study, we aimed to identify and validate prognostic models against a new consensus definition of postoperative pulmonary complications. Methods We did a systematic review and international external validation cohort study. The systematic review was done in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE and Embase on March 1, 2020, for articles published in English that reported on risk prediction models for postoperative pulmonary complications following abdominal surgery. External validation of existing models was done within a prospective international cohort study of adult patients (≥18 years) undergoing major abdominal surgery. Data were collected between Jan 1, 2019, and April 30, 2019, in the UK, Ireland, and Australia. Discriminative ability and prognostic accuracy summary statistics were compared between models for the 30-day postoperative pulmonary complication rate as defined by the Standardised Endpoints in Perioperative Medicine Core Outcome Measures in Perioperative and Anaesthetic Care (StEP-COMPAC). Model performance was compared using the area under the receiver operating characteristic curve (AUROCC). Findings In total, we identified 2903 records from our literature search; of which, 2514 (86·6%) unique records were screened, 121 (4·8%) of 2514 full texts were assessed for eligibility, and 29 unique prognostic models were identified. Nine (31·0%) of 29 models had score development reported only, 19 (65·5%) had undergone internal validation, and only four (13·8%) had been externally validated. Data to validate six eligible models were collected in the international external validation cohort study. Data from 11 591 patients were available, with an overall postoperative pulmonary complication rate of 7·8% (n=903). None of the six models showed good discrimination (defined as AUROCC ≥0·70) for identifying postoperative pulmonary complications, with the Assess Respiratory Risk in Surgical Patients in Catalonia score showing the best discrimination (AUROCC 0·700 [95% CI 0·683–0·717]). Interpretation In the pre-COVID-19 pandemic data, variability in the risk of pulmonary complications (StEP-COMPAC definition) following major abdominal surgery was poorly described by existing prognostication tools. To improve surgical safety during the COVID-19 pandemic recovery and beyond, novel risk stratification tools are required. Funding British Journal of Surgery Society
    corecore