60 research outputs found

    In situ studies of algal biomass in relation to physicochemical characteristics of the Salt Plains National Wildlife Refuge, Oklahoma, USA

    Get PDF
    This is the first in a series of experiments designed to characterize the Salt Plains National Wildlife Refuge (SPNWR) ecosystem in northwestern Oklahoma and to catalogue its microbial inhabitants. The SPNWR is the remnant of an ancient ocean, encompassing ~65 km(2 )of variably hypersaline flat land, fed by tributaries of the Arkansas River. Relative algal biomass (i.e., chlorophyll concentrations attributed to Chlorophyll-a-containing oxygenic phototrophs) and physical and chemical parameters were monitored at three permanent stations for a one-year period (July 2000 to July 2001) using a nested block design. Salient features of the flats include annual air temperatures that ranged from -10 to 40°C, and similar to other arid/semi-arid environments, 15–20-degree daily swings were common. Shade is absent from the flats system; intense irradiance and high temperatures (air and sediment surface) resulted in low water availability across the SPNWR, with levels of only ca. 15 % at the sediment surface. Moreover, moderate daily winds were constant (ca. 8–12 km h(-1)), sometimes achieving maximum speeds of up to 137 km h(-1). Typical of freshwater systems, orthophosphate (PO(4)(3-)) concentrations were low, ranging from 0.04 to <1 μM; dissolved inorganic nitrogen levels were high, but spatially variable, ranging from ca. 250–600 μM (NO(3)(- )+ NO(2)(-)) and 4–166 μM (NH(4)(+)). Phototroph abundance was likely tied to nutrient availability, with high-nutrient sites exhibiting high Chl-a levels (ca. 1.46 mg m(-2)). Despite these harsh conditions, the phototrophic microbial community was unexpectedly diverse. Preliminary attempts to isolate and identify oxygenic phototrophs from SPNWR water and soil samples yielded 47 species from 20 taxa and 3 divisions. Our data indicate that highly variable, extreme environments might support phototrophic microbial communities characterized by higher species diversity than previously assumed

    A gene expression signature associated with survival in metastatic melanoma

    Get PDF
    BACKGROUND: Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. METHODS: Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. RESULTS: SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. CONCLUSION: The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Insights into Ligand–Protein Binding from Local Mechanical Response

    Get PDF
    Computational studies of ligand–protein binding are crucial for properly designing novel compounds of potential pharmacological interest. In this respect, researchers are increasingly interested in steered molecular dynamics for ligand–protein binding and unbinding studies. In particular, it has been suggested that analyzing the work profiles along the ligand–protein undocking paths could be fruitful. Here, we propose that small portions of work profiles, termed “local mechanical responses” of the system to a steering force, could serve as a universal measure for capturing relevant information about the system under investigation. Specifically, we first collected a high number of steering trajectories using two biological systems of increasing complexity (i.e., alanine dipeptide and (R)-roscovitine/CDK5 complex). Then, we devised a novel postprocessing tool to be applied to the local mechanical responses, to extract structural information related to the biological processes under investigation. Despite the out-of-equilibrium character of the trajectories, the analysis carried out on the work profiles provided pivotal information about the investigated biological processes. This could eventually be applied to drug design

    Segmented flow generator for serial crystallography at the European X-ray free electron laser

    Get PDF
    Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature
    corecore