2,028 research outputs found

    Inlet spillage drag tests and numerical flow-field analysis at subsonic and transonic speeds of a 1/8-scale, two-dimensional, external-compression, variable-geometry, supersonic inlet configuration

    Get PDF
    Accurate spillage drag and pressure data are presented for a realistic supersonic inlet configuration. Results are compared with predictions from a finite-differencing, inviscid analysis computer procedure. The analytical technique shows good promise for the evaluation of inlet drag, but necessary refinements were identified. A detailed description of the analytical procedure is contained in the Appendix

    Medipix3 Demonstration and understanding of near ideal detector performance for 60 & 80 keV electrons

    Full text link
    In our article we report first quantitative measurements of imaging performance for the current generation of hybrid pixel detector, Medipix3, as direct electron detector. Utilising beam energies of 60 & 80 keV, measurements of modulation transfer function (MTF) and detective quantum efficiency (DQE) have revealed that, in single pixel mode (SPM), energy threshold values can be chosen to maximize either the MTF or DQE, obtaining values near to, or even exceeding, those for an ideal detector. We have demonstrated that the Medipix3 charge summing mode (CSM) can deliver simultaneous, near ideal values of both MTF and DQE. To understand direct detection performance further we have characterized the detector response to single electron events, building an empirical model which can predict detector MTF and DQE performance based on energy threshold. Exemplifying our findings we demonstrate the Medipix3 imaging performance, recording a fully exposed electron diffraction pattern at 24-bit depth and images in SPM and CSM modes. Taken together our findings highlight that for transmission electron microscopy performed at low energies (energies <100 keV) thick hybrid pixel detectors provide an advantageous and alternative architecture for direct electron imagin

    Direct detection of electron backscatter diffraction patterns.

    No full text
    We report the first use of direct detection for recording electron backscatter diffraction patterns. We demonstrate the following advantages of direct detection: the resolution in the patterns is such that higher order features are visible; patterns can be recorded at beam energies below those at which conventional detectors usefully operate; high precision in cross-correlation based pattern shift measurements needed for high resolution electron backscatter diffraction strain mapping can be obtained. We also show that the physics underlying direct detection is sufficiently well understood at low primary electron energies such that simulated patterns can be generated to verify our experimental data

    Spatial Distribution of Competing Ions around DNA in Solution

    Full text link
    The competition of monovalent and divalent cations for proximity to negatively charged DNA is of biological importance and can provide strong constraints for theoretical treatments of polyelectrolytes. Resonant x-ray scattering experiments have allowed us to monitor the number and distribution of each cation in a mixed ion cloud around DNA. These measurements provide experimental evidence to support a general theoretical prediction: the normalized distribution of each ion around polyelectrolytes remains constant when ions are mixed at different ratios. In addition, the amplitudes of the scattering signals throughout the competition provide a measurement of the surface concentration parameter that predicts the competition behavior of these cations. The data suggest that ion size needs to be taken into account in applying Poisson-Boltzmann treatments to polyelectrolytes such as DNA

    Demonstration of Cross-Reactive Antibodies to Smooth Gram-Negative Bacteria in Antiserum to Escherichia coli J5

    Get PDF
    We investigated the discrepancy between the broad cross-protection against gram-negative infections afforded by antiserum to Escherichia coli J5 and its apparently narrow cross-reactivity in vitro. Rabbits immunized with J5 bacteria produced antibodies to both the J5 lipopolysaccharide (LPS; titer by ELISA, 1:60,000) and LPS from the Re mutant of Salmonella minnesota (i.e., to the ketodeoxyoctonate [KDO] and lipid A determinants; titer, 1:3,200). In highly diluted antiserum, titers of antibody to J5 LPS were reduced by 28%-41% after adsorption with seven strains of smooth gram-negative bacteria and by only 4% after adsorption with the Re mutant. Smooth gram-negative bacteria adsorbed virtually all antibody to Re LPS. Therefore, rabbit antiserum to J5 contains type-specific antibodies to core determinants distal to KDO that can obscure highly cross-reactive antibodies to lipid A-KDO in vitro. Cross-reactive antibodies are demonstrable by adsorption with whole bacteria at limiting concentrations of antibod

    Silver-Zinc Battery Separator Material Development

    Get PDF
    Ethylene/methyl acrylate copolymer synthesis for silver-zinc battery separator

    Bounds on probability of state transfer with respect to readout time and edge weight

    Get PDF
    We analyze the sensitivity of a spin chain modeled by an undirected weighted connected graph exhibiting perfect state transfer to small perturbations in readout time and edge weight in order to obtain physically relevant bounds on the probability of state transfer. At the heart of our analysis is the concept of the numerical range of a matrix; our analysis of edge weight errors additionally makes use of the spectral and Frobenius norms

    Cell transformation assays for prediction of carcinogenic potential: State of the science and future research needs

    Get PDF
    Copyright @ 2011 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting
    • ā€¦
    corecore