4,990 research outputs found

    Extracellular chloride is required for efficient activation of secondary signalling pathways during platelet aggregation

    Get PDF
    Anion channels perform a diverse range of functions and have been implicated in ATP release, volume regulation and phosphatidylserine exposure. Platelets have been shown to express several anion channels however their function is incompletely understood. Due to a paucity of specific pharmacological blockers, we investigated the global effect of extracellular chloride substitution on platelet activation using aggregometry and flow cytometry. In the absence of extracellular chloride we observed a modest effect on the maximum aggregation response to thrombin or collagen-related peptide. Although the rate of aggregation was substantially reduced in a manner that was dependent on the extracellular chloride concentration, aggregation in the absence of chloride was noticeably biphasic, indicative of impaired secondary signalling. This was further investigated by targeting secondary agonists with aspirin and apyrase or by blockade of the ADP receptor P2Y12. Under these conditions, the rates of aggregation were comparable to those recorded in the absence of extracellular chloride. Finally, we assessed platelet granule release by flow cytometry and report a chloride-dependent element of alpha, but not dense, granule secretion. Taken together these data support a role for anion channels in the efficient induction of platelet activation, likely via enhancement of secondary signalling pathways

    Path Integral Marginalization for Cosmology: Scale Dependent Galaxy Bias & Intrinsic Alignments

    Full text link
    We present a path-integral likelihood formalism that extends parameterized likelihood analyses to include continuous functions. The method finds the maximum likelihood point in function-space, and marginalizes over all possible functions, under the assumption of a Gaussian-distributed function-space. We apply our method to the problem of removing unknown systematic functions in two topical problems for dark energy research : scale-dependent galaxy bias in redshift surveys; and galaxy intrinsic alignments in cosmic shear surveys. We find that scale-dependent galaxy bias will degrade information on cosmological parameters unless the fractional variance in the bias function is known to 10%. Measuring and removing intrinsic alignments from cosmic shear surveys with a flat-prior can reduce the dark energy Figure-of-Merit by 20%, however provided that the scale and redshift-dependence is known to better than 10% with a Gaussian-prior, the dark energy Figure-of-Merit can be enhanced by a factor of two with no extra assumptions.Comment: 11 pages, 4 figures, submitted to MNRA

    Accretion vs colliding wind models for the gamma-ray binary LS I +61 303: an assessment

    Get PDF
    LS I +61 303 is a puzzling Be/X-ray binary with variable gamma-ray emission at up TeV energies. The nature of the compact object and the origin of the high-energy emission are unclear. One family of models invokes particle acceleration in shocks from the collision between the B-star wind and a relativistic pulsar wind, while another centers on a relativistic jet powered by accretion. Recent high-resolution radio observations showing a putative "cometary tail" pointing away from the Be star near periastron have been cited as support for the pulsar-wind model. We wish here to carry out a quantitative assessment of these competing models for this extraordinary source. We apply a 3D SPH code for dynamical simulations of both the pulsar-wind-interaction and accretion-jet models. The former yields a description of the shape of the wind-wind interaction surface. The latter provides an estimation of the accretion rate. The results allow critical evaluation of how the two distinct models confront the data in various wavebands under a range of conditions. When one accounts for the 3D dynamical wind interaction under realistic constraints for the relative strength of the B-star and pulsar winds, the resulting form of the interaction front does not match the putative "cometary tail" claimed from radio observations. On the other hand, dynamical simulations of the accretion-jet model indicate that the orbital phase variation of accretion power includes a secondary broad peak well away from periastron, thus providing a plausible way to explain the observed TeV gamma ray emission toward apastron. We conclude that the colliding-wind model is not clearly established for LS I +61 303, while the accretion-jet model can reproduce many key characteristics of the observed TeV gamma-ray emission.Comment: Accepted for publication in A&A. The resolution of the figures is lower than in the journal paper to minimize file sizes. Seven pages, 5 figure

    Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.

    Get PDF
    With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1 (ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency) appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37); P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies

    Impact of two contrasting biochars on the bioaccessibility of 14C-naphthalene in soil

    Get PDF
    This study investigated the impact of two different wood biochars (BioC1 and BioC2) on the extractability and biodegradation of 14C-naphthalene in soil. Both biochars had contrasting properties due to difference in feedstocks and pyrolytic conditions (450–500 °C and 900–1000 °C, designated as BioC1 and BioC2, respectively). This study investigated effects of biochar on the relationship between 14C-naphthalene mineralisation and calcium chloride (CaCl2), hydroxypropyl- β-cyclodextrin (HPCD) or methanol extraction in soil amended with 0%, 0.1%, 0.5% and 1% BioC1 and BioC2 after 1, 18, 36 and 72 d contact times. Total extents of 14C-naphthalene mineralisation and extraction were reduced with increasing concentrations of biochar; however, BioC2 showed greater sorptive capacity. Good linear correlation existed between total extents of 14C-naphthalene mineralisation and HPCD extractions in BioC1 (slope=0.86, r2=0.92) and BioC2 (slope=0.86, r2=0.94) amended soils. However CaCl2 and methanol extractions underestimated and overestimated extents of mineralisation, respectively. These results indicate that biochar can reduce the bioaccessibility of PAHs and the corresponding risk of exposure to biota, whilst HPCD extraction estimated the bioaccessible fraction of PAHs in soil. Bioaccessibility assessment is vital in evaluation of biodegradation potential and suitability of bioremediation as a remediation option

    Risk factors for leaving employment due to multiple sclerosis and changes in risk over the past decades: using competing risk survival analysis

    Get PDF
    Background: No studies have assessed changes in employment survival in multiple sclerosis (MS) populations over recent decades, including the introduction of disease-modifying therapies (DMTs). Objectives: To evaluate factors associated with leaving employment due to MS; to assess whether the risk of leaving employment has changed over recent decades in Australia, stratified by MS phenotype. Methods: We included 1240 participants who were working before MS diagnosis. Information on employment status, reasons for leaving employment and year of leaving were collected. Data were analysed using competing risk survival analysis. Results: Males, progressive MS, lower education level and older age at diagnosis were associated with a higher sub-distribution hazard of leaving employment. Compared to the period before 2010, the sub-distribution hazard during 2010-2016 for relapsing-remitting multiple sclerosis (RRMS) was reduced by 43% (sub-distribution hazard ratio (sHR) 0.67, 95% confidence interval (CI): 0.50 to 0.90), while no significant reduction was seen for primary-progressive multiple sclerosis (PPMS) (sHR 1.25, 95% CI: 0.72 to 2.16) or secondary-progressive multiple sclerosis (SPMS) (sHR 1.37, 95% CI: 0.84 to 2.25). Conclusion: Males, people with progressive MS and those of lower education level were at higher risk of leaving employment. The differential changed risk of leaving employment between people with different MS phenotype after 2010 coincides with the increased usage of high-efficacy DMTs for RRMS

    Transport of Cosmic Rays in Chaotic Magnetic Fields

    Get PDF
    The transport of charged particles in disorganised magnetic fields is an important issue which concerns the propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary, interstellar and even extra-galactic media, as well as the efficiency of Fermi acceleration processes. We have performed detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the extrapolation to high turbulence levels of the scaling predicted by the quasi-linear approximation for the scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by the quasi-linear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the acceleration of high energy cosmic rays in supernovae remnants, in super-bubbles, and in jets and hot spots of powerful radio-galaxies.Comment: To be published in Physical Review D, 20 pages 9 figure

    Agonist evoked increases in intraplatelet zinc couple to functional responses

    Get PDF
    BACKGROUND:  Zinc (Zn2+) is an essential trace element that regulates intracellular processes in multiple cell types. While the role of Zn2+ as a platelet agonist is known, its secondary messenger activity in platelets has not been demonstrated. OBJECTIVES:  This article determines whether cytosolic Zn2+ concentrations ([Zn2+]i) change in platelets in response to agonist stimulation, in a manner consistent with a secondary messenger, and correlates the effects of [Zn2+]i changes on activation markers. METHODS:  Changes in [Zn2+]i were quantified in Fluozin-3 (Fz-3)-loaded washed, human platelets using fluorometry. Increases in [Zn2+]i were modelled using Zn2+-specific chelators and ionophores. The influence of [Zn2+]i on platelet function was assessed using platelet aggregometry, flow cytometry and Western blotting. RESULTS:  Increases of intra-platelet Fluozin-3 (Fz-3) fluorescence occurred in response to stimulation by cross-linked collagen-related peptide (CRP-XL) or U46619, consistent with a rise of [Zn2+]i. Fluoresence increases were blocked by Zn2+ chelators and modulators of the platelet redox state, and were distinct from agonist-evoked [Ca2+]i signals. Stimulation of platelets with the Zn2+ ionophores clioquinol (Cq) or pyrithione (Py) caused sustained increases of [Zn2+]i, resulting in myosin light chain phosphorylation, and cytoskeletal re-arrangements which were sensitive to cytochalasin-D treatment. Cq stimulation resulted in integrin αIIbβ3 activation and release of dense, but not α, granules. Furthermore, Zn2+-ionophores induced externalization of phosphatidylserine. CONCLUSION:  These data suggest that agonist-evoked fluctuations in intra-platelet Zn2+ couple to functional responses, in a manner that is consistent with a role as a secondary messenger. Increased intra-platelet Zn2+ regulates signalling processes, including shape change, αIIbβ3 up-regulation and dense granule release, in a redox-sensitive manner
    corecore