88 research outputs found

    Short Communication: Driftwood provides reliable chronological markers in Arctic coastal deposits

    Get PDF
    Originating from the boreal forest and often transported over large distances, driftwood characterises many Arctic coastlines. Here we present a combined assessment of radiocarbon (14C) and dendrochronological (ring width) age estimates of driftwood samples to constrain the progradation of two Holocene beach-ridge systems near the Lena Delta in the Siberian Arctic (Laptev Sea). Our data show that the 14C ages obtained on syndepositional driftwood from beach deposits yield surprisingly coherent chronologies for the coastal evolution of the field sites. The dendrochronological analysis of wood from modern driftlines revealed the origin and recent delivery of the wood from the Lena River catchments. This finding suggests that the duration transport lies within the uncertainty of state-of-the-art 14C dating and thus substantiates the validity of age indication obtained from driftwood. This observation will help to better understand changes in similar coastal environments, and to improve our knowledge about the response of coastal systems to past climate and sea-level changes

    Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?

    Get PDF
    Tree-ring width of Larix gmelinii (Rupr.) Rupr., ratios of stable isotopes of C (δ13C) and O (δ18O) of whole wood and cellulose chronologies were obtained for the northern part of central Siberia (Tura, Russia) for the period 1864-2006. A strong decrease in the isotope ratios of O and C (after atmospheric δ13C corrections) and tree-ring width was observed for the period 1967-2005, while weather station data show a decrease in July precipitation, along with increasing July air temperature and vapor pressure deficit (VPD). Temperature at the end of May and the whole month of June mainly determines tree radial growth and marks the beginning of the vegetation period in this region. A positive correlation between tree-ring width and July precipitation was found for the calibration period 1929-2005. Positive significant correlations between C isotope chronologies and temperatures of June and July were found for whole wood and cellulose and negative relationships with July precipitation. These relationships are strengthened when the likely physiological response of trees to increased CO2 is taken into account (by applying a recently developed δ13C correction). For the O isotope ratios, positive relationships with annual temperature, VPD of July and a negative correlation with annual precipitation were observed. The δ18O in tree rings may reflect annual rather than summer temperatures, due to the late melting of the winter snow and its contribution to the tree water supply in summer. We observed a clear change in the isotope and climate trends after the 1960s, resulting in a drastic change in the relationship between C and O isotope ratios from a negative to a positive correlation. According to isotope fractionation models, this indicates reduced stomatal conductance at a relatively constant photosynthetic rate, as a response of trees to water deficit for the last half century in this permafrost regio

    Structure and function of intra–annual density fluctuations: Mind the gaps

    Get PDF
    Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events

    Comparing Forest Measurements from Tree Rings and a Space-Based Index of Vegetation Activity in Siberia

    Get PDF
    Different methods have been developed for measuring carbon stocks and fluxes in the northern high latitudes, ranging from intensively measured small plots to space-based methods that use reflectance data to drive production efficiency models. The field of dendroecology has used samples of tree growth from radial increments to quantify long-term variability in ecosystem productivity, but these have very limited spatial domains. Since the cambium material in tree cores is itself a product of photosynthesis in the canopy, it would be ideal to link these two approaches. We examine the associations between the normalized differenced vegetationindex (NDVI) and tree growth using 19 pairs of tree-ring widths (TRW) and maximum latewood density (MXD) across much ofSiberia. We find consistent correlations between NDVI and both measures of tree growth and no systematic difference between MXD and TRW. At the regional level we note strong correspondence between the first principal component of tree growth and NDVI for MXD and TRW in a temperature-limited bioregion, indicating that canopy reflectance and cambial production are broadly linked. Using a network of 21 TRW chronologies from south of Lake Baikal, we find a similarly strong regional correspondence with NDVI in a markedly drier region. We show that tree growth is dominated by variation at decadal and multidecadal time periods, which the satellite record is incapable of recording given its relatively short record

    Permafrost regime affects the nutritional status and productivity of larches in Central Siberia

    Get PDF
    Вечная мерзлота оказывает сильное влияние на развитие лесов благодаря доступности питательных веществ. Основные вопросы этого исследования касались влияния условий площадки на концентрацию макроэлементов в массе и стабильную изотопную (13C и 15N) динамику в течение вегетационного периода, а также стехиометрию питательных веществ и эффективность резорбции в листве двух общих видов лиственницы в Сибири. Концентрация личинок, выращенных на многолетнемерзлых почвах лиственных пород (N, P и K), была чрезвычайно высокой в юных иглах по сравнению с концентрациями в зоне без вечной мерзлоты, но была в 2 раза ниже с созреванием игл. В пределах вечной мерзлоты деревья с участков с более теплым и более глубоким почвенным активным слоем имели концентрацию питательных веществ на 15-60% и более высокую 15N в их иглах по сравнению с более слабыми, более холодными почвами. Лиственница без вечной мерзлоты демонстрировала обогащение листвой в 15N (от +1,4 до +2,4 ‰) по сравнению с вечной мерзлотой (от -2,0 до -6,9 ‰). Сезонная динамика листьев d13C, как правило, снижалась с июня по август на всех участках, положительно коррелируя с массовыми концентрациями N (r = 0,69, p <0,05) и отрицательно с отношением C: N (r = -0,79, p <0,05) , При старении концентрация питательных веществ в иглах лиственницы значительно уменьшилась на 60-90%. Эта сильная способность лиственницы сохранять питательные вещества посредством резорбции является важным механизмом, который поддерживает рост деревьев в начале вегетационного периода, когда почва остается замороженной. Высокая резорбтивная эффективность, обнаруженная для K и P для лиственниц, установленных на вечной мерзлоте, указывает на ограничение питательных веществ роста деревьев в Центрально-Сибирском плато не только по N, как сообщалось ранее, но и по P и K. Наряду с увеличением биомассы (до 50 раз ), более высокие концентрации питательных веществ и обогащение листьев 15N в более теплых местах указывают на сильную реакцию производительности лиственницы на углубление активного слоя почвы

    Contribution of xylem anatomy to tree-ring width of two larch species in permafrost and non-permafrost zones of Siberia

    Get PDF
    Plants exhibit morphological and anatomical adaptations to cope the environmental constraints of their habitat. How can mechanisms for adapting to contrasting environmental conditions change the patterns of tree rings formation? In this study, we explored differences in climatic conditions of permafrost and non-permafrost zones and assessed their influence on radial growth and wood traits of Larix gmelinii Rupr (Rupr) and Larix sibirica L., respectively. We quantified the contribution of xylem cell anatomy to the tree-ring width variability. Comparison of the anatomical tree-ring parameters over the period 1963–2011 was tested based on non-parametric Mann-Whitney U test. The generalized linear modeling shows the common dependence between TRW and the cell structure characteristics in contrasting environments, which can be defined as non-specific to external conditions. Thus, the relationship between the tree-ring width and the cell production in early- and latewood are assessed as linear, whereas the dependence between the radial cell size in early- and latewood and the tree-ring width becomes significantly non-linear for both habitats. Moreover, contribution of earlywood (EW) and latewood (LW) cells to the variation of TRW (in average 56.8% and 24.4% respectively) was significantly higher than the effect of cell diameters (3.3% (EW) and 17.4% (LW)) for the environments. The results show that different larch species from sites with diverging climatic conditions converge towards similar xylem cell structures and relationships between xylem production and cell traits. The work makes a link between climate and tree-ring structure, and promotes a better understanding the anatomical adaptation of larch species to local environment conditions
    corecore