1,148 research outputs found

    Comparison of Proxy and Multimodel Ensemble Means

    Get PDF
    Proxy‐model comparisons show large discrepancies in the impact of volcanic aerosols on the hydrology of the Asian monsoon region (AMR). This was mostly imputed to uncertainties arising from the use of a single model in previous studies. Here we compare two groups of CMIP5 multimodel ensemble mean (MMEM) with the tree‐ring‐based reconstruction Monsoon Asia Drought Atlas (MADA PDSI), to examine their reliability in reproducing the hydrological effects of the volcanic eruptions in 1300–1850 CE. Time series plots indicate that the MADA PDSI and the MMEMs agree on the significant drying effect of volcanic perturbation over the monsoon‐dominated subregion, while disparities exist over the westerlies‐dominated subregion. Comparisons of the spatial patterns suggest that the MADA PDSI and the MMEMs show better agreement 1 year after the volcanic eruption than in the eruption year and in subregions where more tree‐ring chronologies are available. The MADA PDSI and the CMIP5 MMEMs agree on the drying effect of volcanic eruptions in western‐East Asia, South Asian summer monsoon, and northern East Asian summer monsoon (EASM) regions. Model results suggest significant wetting effect in southern EASM and western‐South Asia, which agrees with the observed hydrological response to the 1991 Mount Pinatubo eruption. Analysis on model output from the Last Millennium Ensemble project shows similar hydrological responses. These results suggest that the CMIP5 MMEM is able to reproduce the impact of volcanic eruptions on the hydrology of the southern AMR

    Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro, Brazil.

    Get PDF
    Climate variations and historical land use had a major impact on landscape development in the Brazilian Atlantic Forest (Mata Atlñntica). In southeast Brazil, rainforest expanded under warm-humid climate conditions in the late Holocene, but have been dramatically reduced in historical times. Nevertheless, the numerous remaining forest fragments are of outstanding biological richness. In our research in the Atlantic Forest of Rio de Janeiro we aim at the reconstruction of the late Quaternary landscape evolution and an assessment of human impact on landscapes and rainforests. In this context, special focus is given on (a) effects of climate variations on vegetation cover, soil development, and geomorphological processes, and (b) spatial and temporal land use and landscape degradation patterns. In this paper we present some new results of our interdisciplinary research in the Serra dos Órgãos mountain range, state of Rio de Janeiro

    Development of a thermal ionizer as ion catcher

    Full text link
    An effective ion catcher is an important part of a radioactive beam facility that is based on in-flight production. The catcher stops fast radioactive products and emits them as singly charged slow ions. Current ion catchers are based on stopping in He and H2_2 gas. However, with increasing intensity of the secondary beam the amount of ion-electron pairs created eventually prevents the electromagnetic extraction of the radioactive ions from the gas cell. In contrast, such limitations are not present in thermal ionizers used with the ISOL production technique. Therefore, at least for alkaline and alkaline earth elements, a thermal ionizer should then be preferred. An important use of the TRIÎŒ\muP facility will be for precision measurements using atom traps. Atom trapping is particularly possible for alkaline and alkaline earth isotopes. The facility can produce up to 109^9 s−1^{-1} of various Na isotopes with the in-flight method. Therefore, we have built and tested a thermal ionizer. An overview of the operation, design, construction, and commissioning of the thermal ionizer for TRIÎŒ\muP will be presented along with first results for 20^{20}Na and 21^{21}Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic Isotope Separators and Techniques Related to their Applications (EMIS 2007

    sedFlow – a tool for simulating fractional bedload transport and longitudinal profile evolution in mountain streams

    Get PDF
    Especially in mountainous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats and understanding geomorphic evolution. We present the new modelling tool {sedFlow} for simulating fractional bedload transport dynamics in mountain streams. sedFlow is a one-dimensional model that aims to realistically reproduce the total transport volumes and overall morphodynamic changes resulting from sediment transport events such as major floods. The model is intended for temporal scales from the individual event (several hours to few days) up to longer-term evolution of stream channels (several years). The envisaged spatial scale covers complete catchments at a spatial discretisation of several tens of metres to a few hundreds of metres. sedFlow can deal with the effects of streambeds that slope uphill in a downstream direction and uses recently proposed and tested approaches for quantifying macro-roughness effects in steep channels. sedFlow offers different options for bedload transport equations, flow-resistance relationships and other elements which can be selected to fit the current application in a particular catchment. Local grain-size distributions are dynamically adjusted according to the transport dynamics of each grain-size fraction. sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The high simulation speed allows for simulations of several years, which can be used, e.g., to assess the long-term impact of river engineering works or climate change effects. In combination with the straightforward pre- and postprocessing, the fast calculations facilitate efficient workflows for the simulation of individual flood events, because the modeller gets the immediate results as direct feedback to the selected parameter inputs. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (GPL) (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2015)

    Evidence for a Kondo destroying quantum critical point in YbRh2Si2

    Full text link
    The heavy-fermion metal YbRh2_{2}Si2_{2} is a weak antiferromagnet below TN=0.07T_{N} = 0.07 K. Application of a low magnetic field Bc=0.06B_{c} = 0.06 T (⊄c\perp c) is sufficient to continuously suppress the antiferromagnetic (AF) order. Below T≈10T \approx 10 K, the Sommerfeld coefficient of the electronic specific heat Îł(T)\gamma(T) exhibits a logarithmic divergence. At T<0.3T < 0.3 K, Îł(T)∌T−ϔ\gamma(T) \sim T^{-\epsilon} (Ï”:0.3−0.4\epsilon: 0.3 - 0.4), while the electrical resistivity ρ(T)=ρ0+aT\rho(T) = \rho_{0} + aT (ρ0\rho_{0}: residual resistivity). Upon extrapolating finite-TT data of transport and thermodynamic quantities to T=0T = 0, one observes (i) a vanishing of the "Fermi surface crossover" scale T∗(B)T^{*}(B), (ii) an abrupt jump of the initial Hall coefficient RH(B)R_{H}(B) and (iii) a violation of the Wiedemann Franz law at B=BcB = B_{c}, the field-induced quantum critical point (QCP). These observations are interpreted as evidence of a critical destruction of the heavy quasiparticles, i.e., propagating Kondo singlets, at the QCP of this material.Comment: 20 pages, 8 figures, SCES 201

    Optimization of drift gases for accuracy in pressurized drift tubes

    Get PDF
    Modern detectors such as ATLAS use pressurized drift tubes to minimize diffusion and achieve high coordinate accuracy. However, the coordinate accuracy depends on the exact knowledge of converting measured times into coordinates. Linear space-time relationships are best for reconstruction, but difficult to achieve in the E∝1rE \propto \frac{1}{r} field. Previous mixtures, which contained methane or other organic quenchers, are disfavored because of ageing problems. From our studies of nitrogen and carbon dioxide, two mixtures with only small deviations from linearity were determined and measured. Scaling laws for different pressures and magnetic fields are also given

    Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License.-- et al.Peer reviewe
    • 

    corecore