595 research outputs found

    Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific

    Get PDF
    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect

    Jellyfish Modulate Bacterial Dynamic and Community Structure

    Get PDF
    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters

    Krill Excretion Boosts Microbial Activity in the Southern Ocean

    Get PDF
    Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.This research is a contribution to projects ICEPOS (REN2002-04165-CO3-O2) and ATOS (POL2006-00550/CTM), funded by the Spanish Ministry of Science and Innovation

    Maximum in the Middle: Nonlinear Response of Microbial Plankton to Ultraviolet Radiation and Phosphorus

    Get PDF
    The responses of heterotrophic microbial food webs (HMFW) to the joint action of abiotic stressors related to global change have been studied in an oligotrophic high-mountain lake. A 2×5 factorial design field experiment performed with large mesocosms for >2 months was used to quantify the dynamics of the entire HMFW (bacteria, heterotrophic nanoflagellates, ciliates, and viruses) after an experimental P-enrichment gradient which approximated or surpassed current atmospheric P pulses in the presence vs. absence of ultraviolet radiation. HMFW underwent a mid-term (<20 days) acute development following a noticeable unimodal response to P enrichment, which peaked at intermediate P-enrichment levels and, unexpectedly, was more accentuated under ultraviolet radiation. However, after depletion of dissolved inorganic P, the HMFW collapsed and was outcompeted by a low-diversity autotrophic compartment, which constrained the development of HMFW and caused a significant loss of functional biodiversity. The dynamics and relationships among variables, and the response patterns found, suggest the importance of biotic interactions (predation/parasitism and competition) in restricting HMFW development, in contrast to the role of abiotic factors as main drivers of autotrophic compartment. The response of HMFW may contribute to ecosystem resilience by favoring the maintenance of the peculiar paths of energy and nutrient-mobilization in these pristine ecosystems, which are vulnerable to threats by the joint action of abiotic stressors related to global change.This research was supported by Junta de Andalucía (Excelencia P07-CVI-02598 to PC, and P09-RNM-5376 to JMMS), the Spanish Ministries of Medio Ambiente, Rural y Marino (PN2009/067 to PC) and Ciencia e Innovación (GLC2008-01127/BOS and CGL2011-23681 to PC), the ERC Advanced Grant project number 250254 “MINOS” (to GB), and two Spanish government grants (to JADM and FJB)

    Metagenomic Analysis of Lysogeny in Tampa Bay: Implications for Prophage Gene Expression

    Get PDF
    Phage integrase genes often play a role in the establishment of lysogeny in temperate phage by catalyzing the integration of the phage into one of the host's replicons. To investigate temperate phage gene expression, an induced viral metagenome from Tampa Bay was sequenced by 454/Pyrosequencing. The sequencing yielded 294,068 reads with 6.6% identifiable. One hundred-three sequences had significant similarity to integrases by BLASTX analysis (e≤0.001). Four sequences with strongest amino-acid level similarity to integrases were selected and real-time PCR primers and probes were designed. Initial testing with microbial fraction DNA from Tampa Bay revealed 1.9×107, and 1300 gene copies of Vibrio-like integrase and Oceanicola-like integrase L−1 respectively. The other two integrases were not detected. The integrase assay was then tested on microbial fraction RNA extracted from 200 ml of Tampa Bay water sampled biweekly over a 12 month time series. Vibrio-like integrase gene expression was detected in three samples, with estimated copy numbers of 2.4-1280 L−1. Clostridium-like integrase gene expression was detected in 6 samples, with estimated copy numbers of 37 to 265 L−1. In all cases, detection of integrase gene expression corresponded to the occurrence of lysogeny as detected by prophage induction. Investigation of the environmental distribution of the two expressed integrases in the Global Ocean Survey Database found the Vibrio-like integrase was present in genome equivalents of 3.14% of microbial libraries and all four viral metagenomes. There were two similar genes in the library from British Columbia and one similar gene was detected in both the Gulf of Mexico and Sargasso Sea libraries. In contrast, in the Arctic library eleven similar genes were observed. The Clostridium-like integrase was less prevalent, being found in 0.58% of the microbial and none of the viral libraries. These results underscore the value of metagenomic data in discovering signature genes that play important roles in the environment through their expression, as demonstrated by integrases in lysogeny

    Latitudinal Gradients in Degradation of Marine Dissolved Organic Carbon

    Get PDF
    Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO2 reservoir, such a change could profoundly affect the global carbon cycle

    Enrichment of Omnivorous Cercozoan Nanoflagellates from Coastal Baltic Sea Waters

    Get PDF
    Free-living nano-sized flagellates are important bacterivores in aquatic habitats. However, some slightly larger forms can also be omnivorous, i.e., forage upon both bacterial and eukaryotic resources. This hitherto largely ignored feeding mode may have pronounced implications for the interpretation of experiments about protistan bacterivory. We followed the response of an uncultured group of omnivorous cercozoan nanoflagellates from the Novel Clade 2 (Cerc_BAL02) to experimental food web manipulation in samples from the Gulf of Gdańsk (Southern Baltic Sea). Seawater was either prefiltered through 5 µm filters to exclude larger predators of nanoflagellates (F-treatment), or prefiltered and subsequently 1∶10 diluted with sterile seawater (F+D-treatment) to stimulate the growth of both, flagellates and bacteria. Initially, Cerc_BAL02 were rapidly enriched under both conditions. They foraged on both, eukaryotic prey and bacteria, and were highly competitive at low concentrations of food. However, these omnivores were later only successful in the F+D treatment, where they eventually represented almost one fifth of all aplastidic nanoflagellates. By contrast, their numbers stagnated in the F-treatment, possibly due to top-down control by a concomitant bloom of other, unidentified flagellates. In analogy with observations about the enrichment of opportunistically growing bacteria in comparable experimental setups we suggest that the low numbers of omnivorous Cerc_Bal02 flagellates in waters of the Gulf of Gdańsk might also be related to their vulnerability to grazing pressure

    Ocean currents shape the microbiome of Arctic marine sediments

    Get PDF
    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane

    Diversity and dynamics of rare and of resident bacterial populations in coastal sands

    Get PDF
    Coastal sands filter and accumulate organic and inorganic materials from the terrestrial and marine environment, and thus provide a high diversity of microbial niches. Sands of temperate climate zones represent a temporally and spatially highly dynamic marine environment characterized by strong physical mixing and seasonal variation. Yet little is known about the temporal fluctuations of resident and rare members of bacterial communities in this environment. By combining community fingerprinting via pyrosequencing of ribosomal genes with the characterization of multiple environmental parameters, we disentangled the effects of seasonality, environmental heterogeneity, sediment depth and biogeochemical gradients on the fluctuations of bacterial communities of marine sands. Surprisingly, only 3–5% of all bacterial types of a given depth zone were present at all times, but 50–80% of them belonged to the most abundant types in the data set. About 60–70% of the bacterial types consisted of tag sequences occurring only once over a period of 1 year. Most members of the rare biosphere did not become abundant at any time or at any sediment depth, but varied significantly with environmental parameters associated with nutritional stress. Despite the large proportion and turnover of rare organisms, the overall community patterns were driven by deterministic relationships associated with seasonal fluctuations in key biogeochemical parameters related to primary productivity. The maintenance of major biogeochemical functions throughout the observation period suggests that the small proportion of resident bacterial types in sands perform the key biogeochemical processes, with minimal effects from the rare fraction of the communities

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study
    corecore