109 research outputs found

    Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1

    Get PDF
    We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1–5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1–5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV–macaque mucosal infection model for HIV-1 vaccine and microbicide research

    Designing Products for the Circular Economy

    Get PDF
    Until recent years, apparel product design has been undertaken with very little reference to environmental sustainability. However, the legislative framework has increasingly constrained design decisions relating to the use of hazardous chemicals, especially with the advent of REACH regulations within the EU. Most companies now recognise a large number of chemical substances that are prohibited in the dyeing and finishing of textiles. This dominates thinking about design for the environment. The increasing adoption of environmental management systems has expanded the vision for initiatives promoting sustainability, including laundering and care. Principles are recognised for product design and development that lead to more sustainable goods and services. In some industries, regulations require producer to take responsibility for the disposal of products companies release to the market. This obligation has triggered thinking about design for disassembly and design for disposal. This development has accelerated the adoption of circular economy concepts. The EU has not implemented producer responsibility in apparel, although some companies have voluntarily championed circular economy initiatives. However, the business models of most apparel companies have nothing to say about end-of-life issues. This chapter is concerned with new product development processes that incorporate Design for Environment and Design for Disassembly and Disposal. As there are numerous technical issues to address, a team-based product development process has many advantages, whereby garment designers work alongside specialists from other disciplines. This process requires culture change to be embraced by most brand owners, and a departure from the practice of separating the design process from the product development process. In most cases, changes of this nature bring disruption to a globalised industrial sector. Case studies will be considered that illustrate the concepts developed in this chapter. In particular, the French experience of adopting producer responsibility for apparel goods is considered. The accredited organisation ECO TLC exhibits strength in the promotion of sustainability projects, but there is a fundamental weakness in that culture change in the design process of brand owners is hard to discern

    SHIV-162P3 Infection of Rhesus Macaques Given Maraviroc Gel Vaginally Does Not Involve Resistant Viruses

    Get PDF
    Maraviroc (MVC) gels are effective at protecting rhesus macaques from vaginal SHIV transmission, but breakthrough infections can occur. To determine the effects of a vaginal MVC gel on infecting SHIV populations in a macaque model, we analyzed plasma samples from three rhesus macaques that received a MVC vaginal gel (day 0) but became infected after high-dose SHIV-162P3 vaginal challenge. Two infected macaques that received a placebo gel served as controls. The infecting SHIV-162P3 stock had an overall mean genetic distance of 0.294Β±0.027%; limited entropy changes were noted across the envelope (gp160). No envelope mutations were observed consistently in viruses isolated from infected macaques at days 14–21, the time of first detectable viremia, nor selected at later time points, days 42–70. No statistically significant differences in MVC susceptibilities were observed between the SHIV inoculum (50% inhibitory concentration [IC50] 1.87 nM) and virus isolated from the three MVC-treated macaques (MVC IC50 1.18 nM, 1.69 nM, and 1.53 nM, respectively). Highlighter plot analyses suggested that infection was established in each MVC-treated animal by one founder virus genotype. The expected Poisson distribution of pairwise Hamming Distance frequency counts was observed and a phylogenetic analysis did not identify infections with distinct lineages from the challenge stock. These data suggest that breakthrough infections most likely result from incomplete viral inhibition and not the selection of MVC-resistant variants

    Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells

    Get PDF
    Enhancement of HIV-specific immunity is likely required to eliminate latent HIV infection. Here, we have developed an immunotherapeutic modality aimed to improve T cell-mediated clearance of HIV-1-infected cells. Specifically, we employed Dual-Affinity Re-Targeting (DART) proteins, which are bispecific, antibody-based molecules that can bind 2 distinct cell-surface molecules simultaneously. We designed DARTs with a monovalent HIV-1 envelope-binding (Env-binding) arm that was derived from broadly binding, antibody-dependent cellular cytotoxicity-mediating antibodies known to bind to HIV-infected target cells coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T cells (referred to as HIVxCD3 DARTs). Thus, these DARTs redirected polyclonal T cells to specifically engage with and kill Env-expressing cells, including CD4+ T cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity. Using lymphocytes from patients on suppressive antiretroviral therapy (ART), we demonstrated that DARTs mediate CD8+ T cell clearance of CD4+ T cells that are superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected-patient resting CD4+ T cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T cell cultures following induction of latent virus expression. Combined with HIV latency reversing agents, HIVxCD3 DARTs have the potential to be effective immunotherapeutic agents to clear latent HIV-1 reservoirs in HIV-infected individuals

    Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

    Get PDF
    The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense

    Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections

    Get PDF
    Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response

    Comparison of viral env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design.

    Get PDF
    Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine.We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission.We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell.We confirmed an earlier observation that the transmitted viruses were, on average, modestly under-glycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event.We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies.We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets

    Comparison of Viral Env Proteins from Acute and Chronic Infections with Subtype C Human Immunodeficiency Virus Type 1 Identifies Differences in Glycosylation and CCR5 Utilization and Suggests a New Strategy for Immunogen Design

    Get PDF
    Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets

    The development of CD4 binding site antibodies during HIV-1 infection.

    Get PDF
    Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination
    • …
    corecore