27 research outputs found

    Community structure of nitrifying and denitrifying bacteria from effluents discharged into Lake Victoria, Kenya

    Get PDF
    Open Access Article; Published online: 14 Jul 2022An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater

    ISOFLAVONES FROM CALPURNIA AUREA SUBSP. AUREA AND THEIR ANTICANCER ACTIVITY

    Get PDF
    Background: Calpurnia aurea is an African medicinal plant used in many countries in Africa to treat a range of medical conditions or disorders. Extracts of the plant were shown to be active in antibacterial and antioxidant assays as well as against lice, ticks and maggots. The aim of the study was to isolate the phytochemical constituents from the plant and to test them in appropriate bioassays dependent on the compounds isolated in order to provide a rationale for the use of the plant in ethno-medicine or to provide some information on its constituents. Materials and methods: The stem and bark of the plant was extracted with organic solvents of varying polarity and the extracts separated and purified using column chromatography. The isolated compounds were identified by NMR spectroscopy and the compounds were tested for their in vitro anticancer activity against breast (MCF7), renal (TK10) and melanoma (UACC62) human cell lines using an in house method developed at the CSIR, South Africa. Results: The isoflavones, 4′,5,7-trihydroxyisoflavone (1), 7,3′-dihydroxy-5′-methoxyisoflavone (2), 7-hydroxy-4′,8-dimethoxyisoflavone (3), 7-acetoxy-4′,8-dimethoxyisoflavone (4) and 3',7-dihydroxy-4′,8-dimethoxyisoflavone (5), a pterocarpan (3-acetoxy-9-methoxypterocarpan) and a quinolizidine alkaloid (calpurnine) were isolated from the stem and bark of Calpurnia aurea. The tetrasubstituted isoflavone 5 was found to be the most active in the three cell lines amongst all the compounds tested. This was followed by trisubstituted isoflavone 2. Conclusion: The isoflavones showed moderate activity against the renal, melanoma and breast cancer cell lines tested against, with the isoflavones 2 and 5 showing the best activity of the compounds tested. These isoflavones may have a synergistic effect with other anticancer drugs

    Use of a tablet-based system to perform abdominal ultrasounds in a field investigation of schistosomiasis-related morbidity in western Kenya

    Get PDF
    Chronic intestinal schistosomiasis can cause severe hepatosplenic disease and is a neglected tropical disease of public health importance in sub-Saharan Africa, including Kenya. Although the goal of control programs is to reduce morbidity, milestones for program performance focus on reductions in prevalence and intensity of infection, rather than actual measures of morbidity. Using ultrasound to measure hepatosplenic disease severity is an accepted method of determining schistosomiasis-related morbidity; however, ultrasound has not historically been considered a field-deployable tool because of equipment limitations and unavailability of expertise. A point-of-care tablet-based ultrasound system was used to perform abdominal ultrasounds in a field investigation of schistosomiasis-related morbidity in western Kenya; during the study, other pathologies and pregnancies were also identified via ultrasound, and participants referred to care. Recent technological advances may make it more feasible to implement ultrasound as part of a control program and can also offer important benefits to the community

    An application of deterministic and stochastic processes to model evolving epidemiology of tuberculosis in Kenya

    Get PDF
    Tuberculosis, a highly infectious disease which is transmitted within and between communities when infected and susceptible individuals interact. Tuberculosis at present is a major public health problem and continues to take toll on the most productive members of the community. An understanding of disease spread dynamics of infectious diseases continues to play a critical role in design of disease control strategies. Modeling of Tuberculosis is useful in understanding disease dynamics as it will guide the importance of basic science as well as public policy, prevention and control of the emerging infectious disease and modeling the spread of the disease. This study sought to establish how long under different frameworks will TB disease recede to extinction. In this study, deterministic and stochastic models for the trends of tuberculosis cases over time in Kenya were developed. Susceptible Infective (SI), Susceptible Infective and Recovered (SIR) and Susceptible Exposed Infective and Recovered (SEIR) models were considered. These models were modified in order to fit the data more precisely (age structure and predisposing factors of the incident cases). The SIR and SEIR model with non-linear incidence rates were further looked at and the stability of their solutions were evaluated. The results indicate that both deterministic and stochastic models can give not only an insight but also an integral description of TB transmission dynamics. Both deterministic and stochastic models fit well to the Kenyan TB epidemic model however with varying time periods. The models show that for deterministic model the number of infected individuals increases dramatically within three years and begins to fall quickly when the transmissible acts are 10 and 15 and falls to close to zero by 15 years but when the transmissible act is 5 the number infected peaks by the 11th year and declines to zero by year 31, while for stochastic models the number infected falls exponentially but when the transmissible acts is 15 the decline is slow and will get to zero by the 53rd year while for 10 transmissible acts to declines to zero by the 18th year. The other transmissible acts (1, 3, 5) decline to zero by the 9th year. From this study we conclude that if the national control program continues with the current interventions it could take them up to the next 31 years to bring the infection numbers to zero if the deterministic model is considered, while in the stochastic model with accelerated interventions and high recovery rate and assuming that there is no change in the risk factors it could take them up to 11 years to bring the infections to zero

    Household carbon monoxide (CO) concentrations in a large African city: An unquantified public health burden?

    Get PDF
    Carbon monoxide (CO) is a poisonous gas produced by incomplete combustion of carbon-based fuels that is linked to mortality and morbidity. Household air pollution from burning fuels on poorly ventilated stoves can lead to high concentrations of CO in homes. There are few datasets available on household concentrations of CO in urban areas of sub-Saharan African countries. CO was measured every minute over 24 h in a sample of homes in Nairobi, Kenya. Data on household characteristics were gathered by questionnaire. Metrics of exposure were summarised and analysis of temporal changes in concentration was performed. Continuous 24-h data were available from 138 homes. The mean (SD), median (IQR) and maximum 24-h CO concentration was 4.9 (6.4), 2.8 (1.0–6.3) and 44 ppm, respectively. 50% of homes had detectable CO concentrations for 847 min (14h07m) or longer during the 24-h period, and 9% of homes would have activated a CO-alarm operating to European specifications. An association between a metric of total CO exposure and self-reported exposure to vapours >15 h per week was identified, however this were not statistically significant after adjustment for the multiple comparisons performed. Mean concentrations were broadly similar in homes from a more affluent area and an informal settlement. A model of typical exposure suggests that cooking is likely to be responsible for approximately 60% of the CO exposure of Nairobi schoolchildren. Household CO concentrations are substantial in Nairobi, Kenya, despite most homes using gas or liquid fuels. Concentrations tend to be highest during the evening, probably associated with periods of cooking. Household air pollution from cooking is the main source of CO exposure of Nairobi schoolchildren. The public health impacts of long-term CO exposure in cities in sub-Saharan Africa may be considerable and should be studied further

    Household carbon monoxide (CO) concentrations in a large African city: An unquantified public health burden?

    Get PDF
    Carbon monoxide (CO) is a poisonous gas produced by incomplete combustion of carbon-based fuels that is linked to mortality and morbidity. Household air pollution from burning fuels on poorly ventilated stoves can lead to high concentrations of CO in homes. There are few datasets available on household concentrations of CO in urban areas of sub-Saharan African countries. CO was measured every minute over 24 h in a sample of homes in Nairobi, Kenya. Data on household characteristics were gathered by questionnaire. Metrics of exposure were summarised and analysis of temporal changes in concentration was performed. Continuous 24-h data were available from 138 homes. The mean (SD), median (IQR) and maximum 24-h CO concentration was 4.9 (6.4), 2.8 (1.0–6.3) and 44 ppm, respectively. 50% of homes had detectable CO concentrations for 847 min (14h07m) or longer during the 24-h period, and 9% of homes would have activated a CO-alarm operating to European specifications. An association between a metric of total CO exposure and self-reported exposure to vapours >15 h per week was identified, however this were not statistically significant after adjustment for the multiple comparisons performed. Mean concentrations were broadly similar in homes from a more affluent area and an informal settlement. A model of typical exposure suggests that cooking is likely to be responsible for approximately 60% of the CO exposure of Nairobi schoolchildren. Household CO concentrations are substantial in Nairobi, Kenya, despite most homes using gas or liquid fuels. Concentrations tend to be highest during the evening, probably associated with periods of cooking. Household air pollution from cooking is the main source of CO exposure of Nairobi schoolchildren. The public health impacts of long-term CO exposure in cities in sub-Saharan Africa may be considerable and should be studied further.Additional authors: K Mortimer, A Ndombi, C Pearson, M Twigg, S Wes

    Household carbon monoxide (CO) concentrations in a large African city: An unquantified public health burden?

    Get PDF
    Carbon monoxide (CO) is a poisonous gas produced by incomplete combustion of carbon-based fuels that is linked to mortality and morbidity. Household air pollution from burning fuels on poorly ventilated stoves can lead to high concentrations of CO in homes. There are few datasets available on household concentrations of CO in urban areas of sub-Saharan African countries. CO was measured every minute over 24 h in a sample of homes in Nairobi, Kenya. Data on household characteristics were gathered by questionnaire. Metrics of exposure were summarised and analysis of temporal changes in concentration was performed. Continuous 24-h data were available from 138 homes. The mean (SD), median (IQR) and maximum 24-h CO concentration was 4.9 (6.4), 2.8 (1.0–6.3) and 44 ppm, respectively. 50% of homes had detectable CO concentrations for 847 min (14h07m) or longer during the 24-h period, and 9% of homes would have activated a CO-alarm operating to European specifications. An association between a metric of total CO exposure and self-reported exposure to vapours >15 h per week was identified, however this were not statistically significant after adjustment for the multiple comparisons performed. Mean concentrations were broadly similar in homes from a more affluent area and an informal settlement. A model of typical exposure suggests that cooking is likely to be responsible for approximately 60% of the CO exposure of Nairobi schoolchildren. Household CO concentrations are substantial in Nairobi, Kenya, despite most homes using gas or liquid fuels. Concentrations tend to be highest during the evening, probably associated with periods of cooking. Household air pollution from cooking is the main source of CO exposure of Nairobi schoolchildren. The public health impacts of long-term CO exposure in cities in sub-Saharan Africa may be considerable and should be studied further

    Household carbon monoxide (CO) concentrations in a large African city: an unquantified public health burden?

    Get PDF
    Carbon monoxide (CO) is a poisonous gas produced by incomplete combustion of carbon-based fuels that is linked to mortality and morbidity. Household air pollution from burning fuels on poorly ventilated stoves can lead to high concentrations of CO in homes. There are few datasets available on household concentrations of CO in urban areas of sub-Saharan African countries. CO was measured every minute over 24 hours in a sample of homes in Nairobi, Kenya. Data on household characteristics were gathered by questionnaire. Metrics of exposure were summarised and analysis of temporal changes in concentration was performed. Continuous 24-hour data were available from 138 homes. The mean (SD), median (IQR) and maximum 24-hour CO concentration was 4.9 (6.4), 2.8 (1.0-6.3) and 44ppm, respectively. 50% of homes had detectable CO concentrations for 847 minutes (14h07m) or longer during the 24-hour period, and 9% of homes would have activated a CO-alarm operating to European specifications. An association between a metric of total CO exposure and self-reported exposure to vapours >15 h per week was identified, however this were not statistically significant after adjustment for the multiple comparisons performed. Mean concentrations were broadly similar in homes from a more affluent area and an informal settlement. A model of typical exposure suggests that cooking is likely to be responsible for approximately 60% of the CO exposure of Nairobi schoolchildren. Household CO concentrations are substantial in Nairobi, Kenya, despite most homes using gas or liquid fuels. Concentrations tend to be highest during the evening, probably associated with periods of cooking. Household air pollution from cooking is the main source of CO exposure of Nairobi schoolchildren. The public health impacts of long-term CO exposure in cities in sub-Saharan Africa may be considerable and should be studied further

    Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey

    Get PDF
    Community-based screening for tuberculosis (TB) could improve detection but is resource intensive. We set out to evaluate the accuracy of computer-aided TB screening using digital chest X-ray (CXR) to determine if this approach met target product profiles (TPP) for community-based screening. CXR images from participants in the 2016 Kenya National TB Prevalence Survey were evaluated using CAD4TBv6 (Delft Imaging), giving a probabilistic score for pulmonary TB ranging from 0 (low probability) to 99 (high probability). We constructed a Bayesian latent class model to estimate the accuracy of CAD4TBv6 screening compared to bacteriologically-confirmed TB across CAD4TBv6 threshold cut-offs, incorporating data on Clinical Officer CXR interpretation, participant demographics (age, sex, TB symptoms, previous TB history), and sputum results. We compared model-estimated sensitivity and specificity of CAD4TBv6 to optimum and minimum TPPs. Of 63,050 prevalence survey participants, 61,848 (98%) had analysable CXR images, and 8,966 (14.5%) underwent sputum bacteriological testing; 298 had bacteriologically-confirmed pulmonary TB. Median CAD4TBv6 scores for participants with bacteriologically-confirmed TB were significantly higher (72, IQR: 58–82.75) compared to participants with bacteriologically-negative sputum results (49, IQR: 44–57, p<0.0001). CAD4TBv6 met the optimum TPP; with the threshold set to achieve a mean sensitivity of 95% (optimum TPP), specificity was 83.3%, (95% credible interval [CrI]: 83.0%—83.7%, CAD4TBv6 threshold: 55). There was considerable variation in accuracy by participant characteristics, with older individuals and those with previous TB having lowest specificity. CAD4TBv6 met the optimal TPP for TB community screening. To optimise screening accuracy and efficiency of confirmatory sputum testing, we recommend that an adaptive approach to threshold setting is adopted based on participant characteristics

    Effects of carbonization on the combustion of rice husks briquettes in a fixed bed

    No full text
    Carbonization of raw materials for making briquettes has been identified as a possible way of improving calorific values and fixed carbon contents of briquettes. In spite of these benefits, the main challenges of carbonization are increased percentage of ash content and energy required to process the fuel. In this study, fuels with mixtures of carbonized and raw rice husks were combusted in a fixed bed to examine the effect of carbonization on their combustion properties with an aim of establishing an optimum ratio. Bed temperature distribution, ignition, flame propagation speed, combustion rates and reaction zone thickness were investigated. All experiments were performed in a fixed bed operated in a reverse counter-current flame propagation mode. Four mixtures consisting of different ratios of carbonized rice husks were used to process briquettes; namely, 25 wt%, 50 wt%, 75 wt% and 100 wt% biochar. Air-mass flux for combustion of each mixture was varied between 0.02 and 0.6 kg/m2s. It was established that carbonization increases ignition time and peak bed temperature but lowers flame propagation speed, reaction zone thickness, and combustion rates. Briquettes with lower percentage of biochar had higher volatiles and higher devolatilization rate that shortened combustion period. Briquettes with carbonized rice husk of between 50 wt% and 75 wt% were found to have optimum combustion properties. Processing of briquettes should be done within these carbonization ratios in order to achieve desirable combustion properties
    corecore