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Abstract: Tuberculosis, a highly infectious disease which is transmitted within and between communities when infected and 

susceptible individuals interact. Tuberculosis at present is a major public health problem and continues to take toll on the most 

productive members of the community. An understanding of disease spread dynamics of infectious diseases continues to play a critical 

role in design of disease control strategies. Modeling of Tuberculosis is useful in understanding disease dynamics as it will guide the 

importance of basic science as well as public policy, prevention and control of the emerging infectious disease and modeling the spread 

of the disease. This study sought to establish how long under different frameworks will TB disease recede to extinction. In this 

study,deterministic and stochastic models for the trends of tuberculosis cases over time in Kenya were developed. Susceptible Infective 

(SI), Susceptible Infective and Recovered (SIR) and Susceptible Exposed Infective and Recovered (SEIR) models were considered. 

These models were modified in order to fit the data more precisely (age structure and predisposing factors of the incident cases).The SIR 

and SEIR model with non-linear incidence rates were further looked at and the stability of their solutions were evaluated. The results 

indicate that both deterministic and stochastic models can give not only an insight but also an integral description of TB transmission 

dynamics. Both deterministic and stochastic models fit well to the Kenyan TB epidemic model however with varying time periods. The 

models show that for deterministic model the number of infected individuals increases dramatically within three years and begins to fall 

quickly when the transmissible acts are 10 and 15 and falls to close to zero by 15 years but when the transmissible act is 5 the number 

infected peaks by the 11th year and declines to zero by year 31, while for stochastic models the number infected falls exponentially but 

when the transmissible acts is 15 the decline is slow and will get to zero by the 53rd year while for 10 transmissible acts to declines to zero 

by the 18th year. The other transmissible acts (1,3,5) decline to zero by the 9th year.From this study we conclude that if the national 

control program continues with the current interventions it could take them upto the next 31 years to bring the infection numbers to zero 

if the deterministic model is considered, while in the stochastic model with accelerated interventions and high recovery rate and 

assuming that there is no change in the risk factors it could take them upto 11 years to bring the infections to zero. 
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1. Introduction 
 
Infectious diseases continue to burden our global society,[1]. 
This continued burden of infectious diseases to both human 
beings and animals has brought to the fore the need for 
rigorous study of mathematical epidemiology which entails 
developing models for predicting the dynamics of the 
disease spread of an infection or disease at an individual or 
population levels[2]. It is widely held in discourse that 
mathematical models development, their analysis and 
implementation play a natural and important role in 
obtaining such understanding. It has been noted that model 
formulation processes when carried out systematically, 
clarifies assumptions, variables, and parameters; further, 
models provide conceptual results such as thresholds, basic 
reproduction number, contact numbers, and replacement 
numbers [3], [2]. 
 

The transmission of a communicable disease involves the 
passing of a pathogen from one host to another. The 
incidence rate of new infections is therefore dependent, in 
part, on the existing number of infectious individuals, which 
changes dynamically over the course of an epidemic [4]. 
The understanding of transmission characteristics of 
infectious diseases is paramount particularly in 
communities, regions and countries and can lead to better 
approaches to decreasing the transmission of diseases. 
Mathematical models therefore play the important role of 
understanding, comparing, planning, implementation, 
evaluating, and optimizing various detection, prevention, 
therapy and control programs [2]. 
 
Tuberculosis (TB) is one of the infectious diseases that have 
been with the human race for a long time. It is caused by 
bacillus bacteria and the most common causative organism 
is the mycobacterium tuberculosis,[5]. The transmission of 
the bacteria is through infectious aerosolized droplet nuclei 
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generated by coughing, laughing, talking, sneezing and 
singing. The ability to generate infectious aerosolized 
droplet nuclei is dependent on the infectivity of the patient 
where a sputum smear positive patient is considered most 
infectious,[4].  
 
Globally, the World Health Organization (WHO) estimates 
that 2 billion people or 1/3 of the world’s population, are 
infected with mycobacterium tuberculosis,the bacillithat 
causes TB. In 2012, 1.4 million people died of TB, making it 
the leading infectious cause of death worldwide, [6]. 
 
Kenya is rated as among the 22 high burden TB countries 
that together account for more than 80% of the world’s TB 
cases, [7]. Kenya has been seeing a consistent decline in 
cases notified to the national program over time. The 
number of notified cases in Kenya has been on a decline 
with 99,159 cases notified in 2013 with 87,700 and 89,294 
cases notified in the years 2013 and 2014 respectively [8]. 
Kenya has met and even surpassed the WHO targets of 
detecting 70 % of infectious TB and cure 85% of the 
detected cases[7]. The WHO estimated 9,500 (5,400-15,000) 
deaths due to TB in 2012 making TB to be the fourth 
leading cause of mortality in the country. Tuberculosis 
affects all age groups, but has its greatest toll in the most 
productive age group of 15 to 44 years. HIV/AIDS 
continues to be an important driver of the TB epidemic, with 
approximately 38% of patients with TB also living with 
HIV, TB/HIV[6]. Other factors that have contributed to this 
large TB disease burden include poverty and social 
deprivation that has led to a mushrooming of peri-urban 
slums, congestion in prisons and limited access to general 
health care services [8].  
 
Tuberculosis being a disease of public health importance, 
thus modeling its progression just like any other infectious 
disease in a given population will play a central role in 
providing the understanding of its spread, predicting the 
future extension of the epidemic, its extinction time, and 
evaluating the effectiveness and efficiency of control 
measures. The validity and richness of results of a model 
strongly depend on the reliability and the accuracy of the 
model,[9]. 
 
In the modelling framework, you initially explore the data to 
detect patterns and relationships after which you visualize 
the relationship by fitting a curve to the data. This is the 
empirical approach in which onechooses a model based on 
the data with three main aims; the first is to understand the 
transmission mechanism of the disease. The essential part is 
a mathematical structure (equations that give us threshold 
values and other constants which can be used to describe the 
behavior of the disease). The second aim is to predict the 
future direction of the epidemic. The third is to understand 
how control measures can be put in place to curtail the 
spread of the epidemic (treatment education, immunization 
andisolation). 
 
In this study, we model the tuberculosis disease at the 
population level, using two types of models namely 
deterministic models and stochastic models. 
 

Stochastic models rely on chance variation in risks of 
exposure, disease, and other factors. They provide much 
more insight into an individual-level modeling, taking into 
consideration small population size where every individual 
plays an important role in the model, [10]. Hence, they are 
used when known heterogeneities are important as in small 
or isolated populations[10]. It is more useful in scenarios 
where infection is as a result of contacts with another 
individual. Deterministic models on the other hand, also 
known as compartmental models, attempt to describe and 
explain what happens on average at the population scale. 
They fit well in large populations. These models categorize 
individuals into different subgroups (compartments). The 
Susceptible Exposed Infective and Recovered (SEIR) model, 
for example, includes four compartments represented by the 
Susceptibles, Exposed, Infectious and Recovered. Between 
those compartments we have transition rates which tell us 
how the size of one compartment changes with respect to the 
other[10]. 
 
According to [11], a single infection in an otherwise 
susceptible population will start an epidemic only if the 
density of susceptibles exceeds a threshold. This argument 
introduced the simplest model – SI model – where the 
population is divided into two compartments; the susceptible 
compartment and the infectious compartment. The 
improvement of SI model is the SIR (susceptible –infected-
recovered) model, a simple model of infectious diseases in 
which the host population is categorized according to the 
infection status as susceptible, infectious, or recovered. 
Subsequent refinement of the model incorporates exposed 
(infected but not yet infectious) – SEIR, [12]. 
 
Various studies have related models to data through 
statistical inference in order to demonstrate insights of 
important gains in infectious diseases [13] formulated and 
analyzed a model which incorporated several scenarios of 
self-initiated behavioral changes into the mobility patterns of 
individuals. The results by [13]showed that real time 
availability of information on the disease and the ensuing 
behavioral changes in the population may produce a 
negative impact on disease containment and mitigation.  
 
[12], intheirresearch indicated that analytical methods were 
critical to first show that ignoring latent period or making 
the common assumption of exponentially distributed latent 
and infectious periods always result in underestimating the 
basic reproductive ratio of infection from an outbreak data. 
The results demonstrated the need to pay careful attention to 
the intrinsic assumptions embedded within classical 
frameworks. [14], used mathematical modelling to establish 
that contact patterns were relevant for infections transmitted 
by the respiratory or close contact route and that 
mathematical models were used to design control, strategies. 
 
Through integration of both deterministic and stochastic 
models and methods, [2] showed that mathematical 
modeling was critical in understanding how infectious 
diseases spread at both the individual and population 
level.[15], applied Markov Chain Monte Carlo methods to a 
discrete time branching process model with two types of 
infectious individual: diagnosed and hidden. 
 

Paper ID: SUB158139 1664



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 

Volume 4 Issue 9, September 2015 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

In this study we look at the huge significance of 
mathematical modeling in the study of epidemics and 
epidemiological process in the important field of stochastic 
branching and deterministic modeling using all forms of TB 
and smear positive tuberculosis data reported in Kenya in 
the last 24 years and also discuss the implication when 
applied to modeling of infectious diseases. The developed 
stochastic and deterministic models estimated how long it 
will take before TB isno longera problem in Kenya i.e. the 
numbers of infectious cases get to zero. This can be 
generalized to other infectious diseases that are important 
from epidemiological, mathematical and modeling points of 
view.  
 
2. Methodology 
 
This study was carried in Kenya using notified all forms of 
TB and smear positive TB from data extracted from the 
national TB databases for the years 1990-2014. The 
population estimates used was based on the 1999 Kenya 
census. The target population was all cases who had been 
notified to the National Tuberculosis Program as having 
tuberculosis.  
 
TB surveillance system 
Kenya has a long history of maintaining a robust disease 
surveillance system with a repository of data for about three 
decades, [8]. The primary sources of data are TB patient 
record cards located at the facilities which are usually 
summarized into the facility register. These data are then 
abstracted into Tuberculosis Information system named 
“TIBU”, an electronic data capture system, which transmit 
data to a central database housed in the cloud. 
 
The type of data collected includes demographics, clinical, 
bacteriological and treatment of each case written in TB 
patient record card by the health care worker at the facility. 
These data are then transcribed by the Sub County TB and 
Leprosy Coordinator (SCTLC) on monthly basis into the 
tablet computers. The County TB and Leprosy Coordinator 
(CTLC) conducts facility visits on monthly (or quarterly) 
basis in order to review the data entered by the SCTLCs for 
quality and also to ensure that quality services are provided. 
Also, the national office conducts periodic supervisions and 
Data Quality Audits to ensure quality services and data. 
 
The notification cases database is also maintained at the 
national office and has data for both smear positive as well 
all smear negative and extra-pulmonary cases since 1990. 
This dataset provides a rich repository for data which can be 
analyzed to deduce disease patterns. 
 
Modelling 
In this study we consider the following aims in carrying out 
the modelling; to provide a clear understanding of the 
transmission mechanism of TB disease, obtain an 
understanding of how long the epidemic will take before it is 
completely eliminated from the population and finally to 
have an understanding of the future directions the epidemic 
will take.  
 
 
 

Epidemiological models 
This study presents standard epidemiological models which 
are used to study the spread of disease in host populations 
under different standard conditions. We applied some 
standard notations as utilized by,Hethcote(2000). 
S t denotes the number of susceptibles at time𝑡, I(t) denotes 
the number of infectives at time t, N denotesthe population 
size, then s t = S t 

N
 and i t = I t 

N
(fractions of respective 

populations). If β is the average number of contacts 
(sufficient for transmission) of a person per unit time, then 
βi =

βI

N
 is the average number of contacts with infectives per 

unit time of one susceptible. βN = βI

N
Sis the number of new 

cases per unit time (becauseS = Ns). In this case the 
horizontal incidence is called standard incidence. The 
Simple Mass Action PrincipleηIS = η(Ni)(Ns), with η as a 
mass action coefficient, is a standard for horizontal 
incidence. Comparing, we get ηN = β. So contact rate β 
increases linearly with population size. Therefore we can 

write: NSIη
v

N
 is the standard incidence if v = 0 and it is a mass 

action incidence if v = 1. 
 
Susceptible Infective model 
In this model, the population was divided into just two 
compartments namely; the susceptible compartment S(t) 
and the infectious compartmentI(t). It was assumed that the 
disease is highly infectious but not serious, which means 
that the infectives remain in contact with susceptible for all 
timet ≥ 0. We also assumed that the infectives continued to 
spread the disease till the end of the epidemic, the 
population size was constant. 

S t + I t = N…………………………....(1)  
and homogeneous mixing of population. Infection rate was 
proportional to the number of infectives, i.e. 

𝛽 = 𝑟𝜆𝐼…………………………………..(2) 
 
Susceptible Infective Recovery model  
Under this model which was formulated by [11], it is 
assumed that the population size is large and constant 
(except for death from the disease) and homogeneously 
mixing for continuous time t ≥ 0. Any person who had 
completely recovered from the disease acquired permanent 
immunity and the disease had a very short incubation period 
(so an individual who contracts the disease becomes 
infective immediately afterwards). This enabled the division 
of the population into three compartments: 𝑆 𝑡 − 
susceptibles, 𝐼 𝑡 − infectives, 𝑅(𝑡)-recovered. 
 
SEIR model 
The SEIR model contained one more compartment, the so 
called exposed compartmentE: These included the people 
who were infected but the symptoms of the disease were not 
yet visible. They could not communicate the disease either. 
These people are in so called latent period: For some 
disease, it took certain time for an infective agent to multiply 
inside the host up to the critical level so that the disease 
actually manifested itself in the body of the host. This is 
called incubation period. The same assumptions as in the 
previous models still apply, that is homogeneous mixing 
(mass action principle), constant population size and the 
rates of change from one compartment to the other.  
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Epidemic size at any given time 
In studying the spreading of the epidemics and its 
mathematical models, questions concerning how long it will 
take for the epidemic to diminish are sometimes sought. Is 
that going to be days, weeks, months or even years? The 
value N for which infection tends to maintain in the 
population can be found, whereas for n  it would die out and 
the reintroduction of the infectious agent would be necessary 
in order for the spread of the infection. The idea of the 
critical community size appeared. 
To better understand the TB disease dynamics both the 
deterministic and stochastic models were implemented. The 
main aim for this approach is to better understand which of 
the model provides better and robust estimates which can be 
used to model tuberculosis disease. In the framework, two 
important parameters were considered and included; 
transmissible acts i.e. how many cases one infectious 
individual will infect and the recovery rate which is how 
many of those who are infected will recover. In addition, the 
time considered was 63 years and taken to be the current life 
expectation at birth in Kenya. In this modelling framework it 
started with simulations for both deterministic and stochastic 
models using and initial population of 1000 and once stable 
models were obtained, real notified cases were subjected to 
the model and results obtained. 
 
3. Results 
 
Deterministic Model Simulation Results 
 
We carried out simulation using an initial population of 
1000 individuals while assuming that transmissible acts can 
either take 1, 3, 5, 10 or 15 individuals being infected by one 
single individual at the start of the epidemic. We further 
assumed that the recovery rates for those who get infected 
can be 0.80, 0.85 or 0.90. 
 
Figure 1 shows that when the transmissible act is large there 
is a significant drop in the number of cases up to the 5th year 
and begins to rise and remains close to 200 susceptible cases 
over all the duration. When the transmissible acts are few 
i.e. 1 and 3 cases the number of susceptible cases remains 
high throughout the period, while when transmissible acts 
are 5 the susceptible cases show an exponential decay over 
the period but remains high. 

 
Figure 1: DCM Model for the Susceptible Number of Cases 

 
Figure 2 shows that the number of cases that transition from 
the susceptible group to the infection group is highest when 
the transmissible acts is large i.e. 10 and 15 and reduces 
dramatically by the 11th year while peaking by year 3 and 5 

respectively. The transmissible act of 5 tends to peak by the 
10th year and reduce to zero by the 27th year. While when 
transmissible acts are 1 or 3 the numbers which move from 
the susceptible pool to the infectious pool. 
 

 
Figure 2: DCM Model for the Susceptible to Infected 

Number of Cases 
 

Figure 3 shows the number of infected cases at any 
particular year. It shows that when the transmissible acts is 
high the numbers rapidly peaks and also rapidly declines 
thereafter, when the transmissible acts are 15 and 10 
respectively but when transmissible acts is 5 the number of 
infected numbers tends to assume a normal distribution 
peaking by year 11 and declines to zero by year 31. When 
transmissible acts are either 1 or 3 the numbers are barely 
noticeable and moves to zero by year 3.  

 

 
Figure 3: DCM Model for the Infected Number of Cases 

 
Figure 4 shows the number of infected cases which move to 
the recovery compartment at any particular year. It shows 
that when the transmissible acts is high the numbers rapidly 
peaks and also rapidly declines thereafter, when the 
transmissible acts are 15 and 10 respectively but when 
transmissible acts is 5 the number of infected numbers tends 
to assume a normal distribution peaking by year 11 and 
declines to zero by year 31. When transmissible acts are 
either 1 or 3 the numbers are barely noticeable and moves to 
zero by year 3.  

 
Figure 4: DCM Model for the Infected to Recovered 

Number of Cases 
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Deterministic Model Results with reported notified cases 
of Tuberculosis 
The results presented here relates to the model that is 
obtained when it is subjected to the actual notifications 
reported in Kenya. The assumption taken was that a third of 
the population is infected with the Tuberculosis albeit it 
could be in latent form and some may never develop TB in 
their lifetime. Thus in Kenya with an approximate 
population of 44 million people it is estimated that close to 
15 million individuals would be susceptible of developing 
TB in a lifetime. 
 
Figure 5 shows that when the transmissible act is large there 
is a significant drop in the number of cases up to the 5th year 
and begins to rise and remains close to 1.5 million 
susceptible cases over all the duration. When the 
transmissible acts are few i.e. 1 and 3 cases the number of 
susceptible cases declines uniformly and remains high 
throughout the period at approximately 7-8 million 
susceptible cases, while when transmissible acts are 5 the 
susceptible cases show an exponential decay over the period 
but remains high. The observed data shows consistent 
behavior as the simulated data. 

 
Figure 5: Observed DCM Model for the Susceptible 

Number of Cases 
 

Figure 6 shows that the number of cases that transited from 
the susceptible to group to the infected pool, the numbers 
which transition is highest when the transmissible acts is 
large i.e. 10 and 15 and reduces dramatically by the 11th year 
while peaking by year 3 and 5 respectively. The 
transmissible act of 5 tends to peak by the 11th year and 
reduce to zero by the 28th year. While when transmissible 
acts are 1 or 3 the numbers which move from the susceptible 
pool to the infectious pool remain fairly stable at less than 1 
million cases all through the period.  

 

 
Figure 6: Observed DCM Model for the Susceptible to 

Infected Number of Cases 
 

Figure 7 shows the number of infected cases at any 
particular year. It shows that when the transmissible act is 
high the numbers rapidly peak and decline thereafter. This 
could be attributed to the high recovery rates, when the 

transmissible acts are 15 and 10 respectively but when 
transmissible acts is 5 the number of infected numbers tends 
to assume a normal distribution peaking by year 12 and 
declines to zero by year 31. When transmissible acts are 
either 1 or 3 the numbers are barely noticeable and moves to 
zero by year 3.  

 

 
Figure 7: Observed DCM Model for the Infected Number of 

Cases 
 

Figure 8 shows the number of infected cases which move to 
the recovery compartment at any particular year. It shows 
that when the transmissible acts is high the numbers rapidly 
peaks and also rapidly declines thereafter, when the 
transmissible acts are 15 and 10 respectively but when 
transmissible acts is 5 the number of infected numbers tends 
to assume a normal distribution peaking by year 11 and 
declines to zero by year 32. When transmissible acts are 
either 1 or 3 the numbers are barely noticeable and moves to 
zero by year 3.  
 

 
Figure 8: Observed DCM Model for the Infected to 

Recovered Number of Cases 
 

Figure 9 shows the number of infected cases which 
eventually recover. The numbers rapidly increase when the 
transmissible acts is large i.e. 10 and 15, this number peaks 
by year 10 and 7 respectively. But when transmissible acts 
are 5 the number of infected numbers tends rise 
exponentially and peaks by the 17th year and begins to 
decline throughout the remaining period. When 
transmissible acts are either 1 or 3 the numbers are barely 
noticeable and remain constant throughout the period after 
the 15th year.  
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Figure 9: Observed DCM Model for the Recovered Number 

of Cases 
 

Stochastic Model Results 
The Stochastic Individual Contact Models (SICM) belongs 
to a novel class of microsimulation models which were 
developed to mirror the deterministic models but add 
random variation in all components of the transmission 
dynamics system, from infection to recovery to vital 
dynamics (births and deaths). In this research ICM modelled 
using Epi Model in R. The results presentedbelow relate to 
simulated data with 1000 individuals. The parameters of 
interest were transmissible acts per person (1, 3, 5, 10 and 
15). This refers to the number of individuals one could 
potentially infect if left untreated. A total of 5,000 
simulations were carried out to obtain the parameter 
estimates.  
 
Figure 10 shows that regardless of the transmissible acts 
there is a uniform decline in the number of susceptible 
number of cases from the hypothetical 1,000 number of 
susceptible cases. A more pronounced decline is realized 
only when the transmissible acts is 15.  

 
Figure 10: Simulated ICM Model for the Susceptible 

Number of Cases 
 

Figure 11 showsthe transition numbers from susceptible to 
infected shows a rise for all transmissible and peaks after 2 
years. The rate of decline is not highly pronounced when the 
transmissible acts is 15 and declines to zero after 27 years. 
While the other transmissible acts comes to a close after 13 
years. 

 
Figure 11: Simulated data ICM model for the susceptible to 

Infected Number of Cases 

Figure 12 shows the infected number of cases for all the 
transmissible acts shows a uniform rate of decline for all the 
transmissible acts with exception of 15 transmissible acts. 
This shows that the number of infected numbers shows an 
exponential decay with the number coming to zero by the 
end of 28 years. 

 

 
Figure 12: Simulated data model for the infected number of 

cases 
 

The figure 13 shows that the number of cases that recover 
increases sharply up to year 7 after which it begins to 
decline; the number of cases which recover decline in a 
stable manner. The number of cases which recover remains 
lower for the 1, 2 and 3 transmissible acts. 

 
Figure13: Simulated data ICM Model for the recovered 

Number of Cases 
 

Observed data stochastic individual contact Model 
The results presented here relates to the models that is 
obtained when it is subjected to the actual notifications 
reported in Kenya. The assumption taken is that a third of 
the population is infected with the Tuberculosis albeit it 
could be in latent form and some may never develop TB in 
their lifetime. Thus in Kenya with an approximate 
population of 44 million people it is estimated that close to 
15 million individuals would be susceptible of developing 
TB in a lifetime. 
 
Figure 14 shows the susceptible number of cases from the 
estimated Kenyan population was taken to be approximately 
15 million people. With an assumed recovery rate of 80, 85 
and 90% with transmissible acts per person being 1, 3,5,10 
and 15, when the observed data was used it showed that 
there is close concordance with the simulated model. It 
shows a smooth decline for the susceptible numbers with 
exception when the transmissible act is 15, the rate of 
decline is higher than any other transmissible acts. 
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Figure14: Observed data ICM Model for the Susceptible 

Number of Cases 
 

Figure 15 show the transition numbers from susceptible to 
infected shows a rise for all transmissible and peaks after 2 
years. The rate of decline is not highly pronounced when the 
transmissible acts is 15 and declines to zero after 54 years. 
While the other transmissible acts comes to a close after 9 to 
19 years. 

 

 
Figure15: Observed ICM Model for the Susceptible to 

Infected Number of Cases 
 

Figure 16 shows the infected number of cases for all the 
transmissible acts shows a uniform rate of decline for all the 
transmissible acts with exception of 15 transmissible acts. 
This shows that the number of infected numbers for 15 
transmissible acts shows an exponential decay with the 
number coming to zero by the end of 53 years. 

 

 
Figure 16: Observed ICM Model for the Infected Number 

of Cases 
 

The figure 17 shows that the number which transitioned 
from the infected to recovered class dramatically increases 
and declines after 4 years with the rate for all the 
transmissible acts except when the recovery rate is 0.80 
when the rate of decline is exponential in nature.  
 

 
Figure 17: Observed ICM Model for the Infected to 

recovered Number of Cases 
 

The figure 18 shows that the number of cases that recover 
increases sharply up to year 7 after which it begins to 
decline; the number of cases which recover decline in a 
stable manner. The number of cases which recover remains 
lower for the 1, 2 and 3 transmissible acts. While for the 15 
transmissible acts when the recovery rate is 0.80 it remains 
higher throughout the years. 

 
Figure 18: Observed ICM Model for the recovered Number 

of Cases 
 

4. Discussion 
 
Modelling of Tuberculosis has had a long history and among 
the first model to be developed first in the 1960s, [16]-[18]. 
Key TB model formulations appeared quickly thereafter. 
[16], developed a linear model for TB based on three 
compartments: susceptible, infected non-cases and 
infectious cases. [19], clearly formulated the connection 
between TB prevalence and infection rate in his model using 
a set of differential equations. 
 
The studies on modelling Tuberculosis have tried to provide 
insights into disease transmission dynamics. Among the 
earlier work that mark the beginning of modern approach to 
modelling and thoughtful consideration of probabilities in 
modelling have be highlighted by [16], [18], [20] and [21]. 
 
In this study we have made attempts to construct both 
deterministic and stochastic models which can enable us 
obtain insights and obtain the integral quantitative 
description of TB transmission dynamics. The results we 
obtained indicate that both deterministic and stochastic fit 
well to the Kenyan TB epidemic model however with 
varying time periods. The results show that for deterministic 
model the number of infected individuals increases 
dramatically within three years and begins to fall quickly 
when the transmissible acts are 10 and 15 and falls to close 
to zero by 15 years but when the transmissible act is 5 the 
number infected peaks by the 11th year and declines to zero 
by year 31(Figure7). For stochastic models the number 
infected falls exponentially but when the transmissible acts 
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is 15 the decline is slow and will get to zero by the 53rd year 
while for 10 transmissible acts to declines to zero by the 18th 
year. While the other transmissible acts (1,3,5) decline to 
zero by the 9th year (Figure 16). The results obtained are 
consistent with other findings in other studies which have 
attempted to investigate the broad-level transmission 
dynamics of tuberculosis, [22].Theirresults however 
indicated that most parameters do not significantly affect the 
severity of the TB epidemic; those that do soinclude: disease 
reactivation rate, fraction of infected individuals who 
develop TB soon after infection (instead ofa prolonged 
latent period), number of individuals that an infectious 
individual infects per year, disease death rate,and population 
recruitment rate i.e. the transition from the susceptible pool 
to those who are infected. Model results were in rough 
agreement with historical case rate data anddeveloping 
country data. 
 
 Because transmission is a function of both contact rate and 
infectivity, [23], formulated a deterministic cluster model to 
specifically explore the impact of intense and long exposure 
to individuals with active TB on population level 
transmission dynamics. In contrast to work by [22]who had 
consistent assumptions that there is an average number of 
people who get infected each year from the untreated case, 
this model does not assume an average number of 
individuals infected per year from one infectious case. 
Specifically, this model differentiates between 
epidemiologically active clusters (defined as active when 
one member has active TB infection) and casual infections. 
Model results indicate that casual infections may be as or 
more important than cluster-generated secondary infections 
at a population level. 
 
In this study, it was assumed that the population is randomly 
mixing i.e. homogeneous and there is a constant recovery 
rate of those who are infected at 80, 85 or 90% because of 
chemotherapy and those who remain continue within the 
community to infect others.From this results its 
hypothesized that the transmissible acts can range between 1 
to 5 for any infectious case if left untreated.  
 
The results obtained have congruence with the spatial 
stochasticmodel, developed by [24]which explored the role 
of social clusters in disease transmission. [23],indicated that 
three parameters that influence the transmission of TB: the 
size of each individual’ssocial cluster, and the infection rates 
within and outside of the cluster. When the infection rate is 
low outside thecluster, an epidemic is only possible when 
the average cluster size and within-cluster infection rate are 
largeenough. They then compared this to the mean field 
model with corresponding parameters (homogenous mixing, 
except by cluster), and discover that the qualitative model 
behavior is unchanged, indicating that the model results are 
robust to mixing heterogeneity. 
 
The results we present here however did not explicitly focus 
on the effects of heterogeneity in demographically distinct 
populations. More work must be done to better understand 
the dynamics of disease spread in heterogeneous populations 
including the exogenous factors that affect disease 
transmission, and implicit population heterogeneity. This 

could hopeful augment more clearer understanding of TB 
epidemiology. 
 
5. Conclusion  
 
From this study it can be concluded that if the national 
control program continues with the current interventions it 
could take them up to the next 31 years to bring the infection 
numbers to zero if the deterministic model is considered 
while in the stochastic model with accelerated interventions 
and high recovery rate and assuming that there is no change 
in the risk factors it could take them upto 11 years to bring 
the infections to zero.  
 
Despite the significant increase in the information from 
molecular TB studies, some major questions remain 
unresolved because the natural history of the disease makes 
its comprehensive study difficult coupled with surveys based 
on tuberculin skin test are hard to interpret because of the 
cross-reactivity of BCG vaccine; case notification data 
underestimates TB burden in the country. Thus there is need 
to have well detailed models which include both 
environmental and biological factors into the understanding 
of the TB transmission dynamics. 
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