529 research outputs found

    Benefits and risks of including the bromoform containing seaweed Asparagopsis in feed for the reduction of methane production from ruminants

    Get PDF
    The agricultural production of ruminants is responsible for 24% of global methane emissions, contributing 39% of emissions of this greenhouse gas from the agricultural sector. Strategies to mitigate ruminant methanogenesis include the use of methanogen inhibitors. For example, the seaweeds Asparagopsis taxiformis and Asparagopsis armata included at low levels in the feed of cattle and sheep inhibit methanogenesis by up to 98%, with evidence of improvements in feed utilisation efficiency. This has resulted in an increasing interest in and demand for these seaweeds globally. In response, research is progressing rapidly to facilitate Asparagopsis cultivation at large scale, and to develop aquaculture production systems to enable a high quality and consistent supply chain. In addition to developing robust strategies for sustainable production, it is important to consider and evaluate the benefits and risks associated with its production and subsequent use as an antimethanogenic feed ingredient for ruminant livestock. This review focuses on the relevant ruminal biochemical pathways, degradation, and toxicological risks associated with bromoform (CHBr3), the major active ingredient for inhibition of methanogenesis in Asparagopsis, and the effects that production of Asparagopsis and its use as a ruminant feed ingredient might have on atmospheric chemistry

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Effective health care for older people living and dying in care homes: A realist review

    Get PDF
    Background: Care home residents in England have variable access to health care services. There is currently no coherent policy or consensus about the best arrangements to meet these needs. The purpose of this review was to explore the evidence for how different service delivery models for care home residents support and/or improve wellbeing and health-related outcomes in older people living and dying in care homes. Methods: We conceptualised models of health care provision to care homes as complex interventions. We used a realist review approach to develop a preliminary understanding of what supported good health care provision to care homes. We completed a scoping of the literature and interviewed National Health Service and Local Authority commissioners, providers of services to care homes, representatives from the Regulator, care home managers, residents and their families. We used these data to develop theoretical propositions to be tested in the literature to explain why an intervention may be effective in some situations and not others. We searched electronic databases and related grey literature. Finally the findings were reviewed with an external advisory group. Results: Strategies that support and sustain relational working between care home staff and visiting health care professionals explained the observed differences in how health care interventions were accepted and embedded into care home practice. Actions that encouraged visiting health care professionals and care home staff jointly to identify, plan and implement care home appropriate protocols for care, when supported by ongoing facilitation from visiting clinicians, were important. Contextual factors such as financial incentives or sanctions, agreed protocols, clinical expertise and structured approaches to assessment and care planning could support relational working to occur, but of themselves appeared insufficient to achieve change. Conclusion: How relational working is structured between health and care home staff is key to whether health service interventions achieve health related outcomes for residents and their respective organisations. The belief that either paying clinicians to do more in care homes and/or investing in training of care home staff is sufficient for better outcomes was not supported.This research was funded by National Institute of Health Research Health Service Delivery and Research programme (HSDR 11/021/02)

    The Fruit Flies (Diptera, Tephritidae) in Bhutan: New Faunistic Records and Compendium of Fauna

    Get PDF
    Based on a field survey from 2017, twenty-three species are reported from Bhutan for the first time: Acroceratitis ceratitina, A. hardyi, Anomoia approximata, Bactrocera connecta, B. latifrons, B. nigrifacia, B. syzygii, Campiglossa sororcula, Cecidochares connexa, Dacus jacobi, Gastrozona fasciventris, Hoplandromyia antelopa, Lenitovena ultima, Ptilona confinis, Rioxoptilona dunlopi, R. formosana, R. vaga, Spathulina acroleuca, Themara yunnana, Trypeta indica, Zeugodacus apiciflavus, Z. diversus, and Z. fereuncinatus. Four species of the genera Cornutrypeta, Hemilea, Morinowotome, and Vidalia are also recorded for the first time, but the precise determination to species needs additional study and material. As the result, 71 species is listed from Bhutan by far. Their taxonomic position and key characters are discussed. Illustrations for most of the newly recorded species are given

    Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    Get PDF
    Background: Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings: In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance: Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results fro

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0 x 10(exp -8). We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74 +/- 0.05) s between GRB170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between -3 x 10(exp-16) times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1 - 1.4 per year during the 2018--2019 observing run and 0.3 - 1.7 per year at design sensitivity

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9-1.8+1.7 for z≲1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure
    corecore