1,084 research outputs found

    Daily associations between sleep and physical activity : a systematic review and meta-analysis

    Full text link
    The day-to-day variations of sleep and physical activity are associated with various health outcomes in adults, and previous studies suggested a bidirectional association between these behaviors. The daily associations between sleep and physical activity have been examined in observational or interventional contexts. The primary goal of the current systematic review and meta-analysis was to summarize existing evidence about daily associations between sleep and physical activity outcomes at inter- and intra-individual level in adults. A systematic search of records in eight databases from inception to July 2019 identified 33 peer-reviewed empirical publications that examined daily sleep – physical activity association in adults. The qualitative and quantitative analyses of included studies did not support a bidirectional daily association between sleep outcomes and physical activity. Multilevel meta-analyses showed that three sleep parameters were associated with physical activity the following day: sleep quality, sleep efficiency, and wake after sleep onset. However, the associations were small, and varied in terms of direction and level of variability (e.g. inter- or intra-individual). Daytime physical activity was associated with lower total sleep time the following night at an inter-person level with a small effect size. From a clinical perspective, care providers should monitor the effects of better sleep promotion on physical activity behaviours in their patients. Future studies should examine sleep and physical activity during a longer period and perform additional sophisticated statistical analyses

    Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM

    Get PDF
    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims

    Three-Dimensional Object Registration Using Wavelet Features

    Get PDF
    Recent developments in shape-based modeling and data acquisition have brought three-dimensional models to the forefront of computer graphics and visualization research. New data acquisition methods are producing large numbers of models in a variety of fields. Three-dimensional registration (alignment) is key to the useful application of such models in areas from automated surface inspection to cancer detection and surgery. The algorithms developed in this research accomplish automatic registration of three-dimensional voxelized models. We employ features in a wavelet transform domain to accomplish registration. The features are extracted in a multi-resolutional format, thus delineating features at various scales for robust and rapid matching. Registration is achieved by using a voting scheme to select peaks in sets of rotation quaternions, then separately identifying translation. The method is robust to occlusion, clutter, and noise. The efficacy of the algorithm is demonstrated through examples from solid modeling and medical imaging applications

    Nonlinear regularization techniques for seismic tomography

    Full text link
    The effects of several nonlinear regularization techniques are discussed in the framework of 3D seismic tomography. Traditional, linear, 2\ell_2 penalties are compared to so-called sparsity promoting 1\ell_1 and 0\ell_0 penalties, and a total variation penalty. Which of these algorithms is judged optimal depends on the specific requirements of the scientific experiment. If the correct reproduction of model amplitudes is important, classical damping towards a smooth model using an 2\ell_2 norm works almost as well as minimizing the total variation but is much more efficient. If gradients (edges of anomalies) should be resolved with a minimum of distortion, we prefer 1\ell_1 damping of Daubechies-4 wavelet coefficients. It has the additional advantage of yielding a noiseless reconstruction, contrary to simple 2\ell_2 minimization (`Tikhonov regularization') which should be avoided. In some of our examples, the 0\ell_0 method produced notable artifacts. In addition we show how nonlinear 1\ell_1 methods for finding sparse models can be competitive in speed with the widely used 2\ell_2 methods, certainly under noisy conditions, so that there is no need to shun 1\ell_1 penalizations.Comment: 23 pages, 7 figures. Typographical error corrected in accelerated algorithms (14) and (20

    Glioblastoma adaptation traced through decline of an IDH1 clonal driver and macro-evolution of a double-minute chromosome

    Get PDF
    In a glioblastoma tumour with multi-region sequencing before and after recurrence, we find an IDH1 mutation that is clonal in the primary but lost at recurrence. We also describe the evolution of a double-minute chromosome encoding regulators of the PI3K signalling axis that dominates at recurrence, emphasizing the challenges of an evolving and dynamic oncogenic landscape for precision medicin

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma.

    Get PDF
    The molecular genetic relationship between esophageal adenocarcinoma (EAC) and its precursor lesion, Barrett's esophagus, is poorly understood. Using whole-genome sequencing on 23 paired Barrett's esophagus and EAC samples, together with one in-depth Barrett's esophagus case study sampled over time and space, we have provided the following new insights: (i) Barrett's esophagus is polyclonal and highly mutated even in the absence of dysplasia; (ii) when cancer develops, copy number increases and heterogeneity persists such that the spectrum of mutations often shows surprisingly little overlap between EAC and adjacent Barrett's esophagus; and (iii) despite differences in specific coding mutations, the mutational context suggests a common causative insult underlying these two conditions. From a clinical perspective, the histopathological assessment of dysplasia appears to be a poor reflection of the molecular disarray within the Barrett's epithelium, and a molecular Cytosponge technique overcomes sampling bias and has the capacity to reflect the entire clonal architecture
    corecore