38,913 research outputs found

    Design of recursive digital filters having specified phase and magnitude characteristics

    Get PDF
    A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented

    Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

    Get PDF
    Non-relativistic quantum chemical calculations of the particle mass, m ± 2 , corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form {m ± 1 m ± 2 m ∓ 3 } , are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system

    Recurrence Formulas for Fully Exponentially Correlated Four-Body Wavefunctions

    Full text link
    Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (>= -1) of all the interparticle distances r_ij, multiplied by an exponential containing an arbitrary linear combination of all the r_ij. These integrals are generalizations of those encountered using Hylleraas basis functions, and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill, plus some easily evaluated three-body "boundary" integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.Comment: 10 pages, no figures, accepted by Phys. Rev. A (January 2009

    The Semiclassical Limit for SU(2)SU(2) and SO(3)SO(3) Gauge Theory on the Torus

    Full text link
    We prove that for SU(2)SU(2) and SO(3)SO(3) quantum gauge theory on a torus, holonomy expectation values with respect to the Yang-Mills measure d\mu_T(\o) =N_T^{-1}e^{-S_{YM}(\o)/T}[{\cal D}\o] converge, as T↓0T\downarrow 0, to integrals with respect to a symplectic volume measure ÎŒ0\mu_0 on the moduli space of flat connections on the bundle. These moduli spaces and the symplectic structures are described explicitly.Comment: 18 page

    Precision measurement of the 5 2S1/2 - 4 2D5/2 quadrupole transition isotope shift between 88Sr+ and 86Sr+

    Full text link
    We have measured the isotope shift of the narrow quadrupole-allowed 5 2S1/2 - 4 2D5/2 transition in 86Sr+ relative to the most abundant isotope 88Sr+. This was accomplished using high-resolution laser spectroscopy of individual trapped ions, and the measured shift is Delta-nu_meas^(88,86) = 570.281(4) MHz. We have also tested a recently developed and successful method for ab-initio calculation of isotope shifts in alkali-like atomic systems against this measurement, and our initial result of Delta-nu_calc^(88,86) = 457(28) MHz is also presented. To our knowledge, this is the first high precision measurement and calculation of that isotope shift. While the measurement and the calculation are in broad agreement, there is a clear discrepancy between them, and we believe that the specific mass shift was underestimated in our calculation. Our measurement provides a stringent test for further refinements of theoretical isotope shift calculation methods for atomic systems with a single valence electron

    Recursion relations for Hylleraas three-electron integral

    Full text link
    Recursion relations for Hylleraas three-electron integral are obtained in a closed form by using integration by parts identities. Numerically fast and well stable algorithm for the calculation of the integral with high powers of inter-electronic coordinates is presented.Comment: 12 pages, requires RevTeX4, submitted to Phys. Rev.

    Doing it differently: Engaging interview participants with imaginative variation

    Get PDF
    Imaginative variation was identified by Husserl (1936/1970) as a phenomenological technique for the purpose of elucidating the manner in which phenomena appear to consciousness. Briefly, by engaging in the phenomenological reduction and using imaginative variation, phenomenologists are able to describe the experience of consciousness, having stepped outside of the natural attitude through the epochē. Imaginative variation is a stage aimed at explicating the structures of experience, and is best described as a mental experiment. Features of the experience are imaginatively altered in order to view the phenomenon under investigation from varying perspectives. Husserl argued that this process will reveal the essences of an experience, as only those aspects that are invariant to the experience of the phenomenon will not be able to change through the variation. Often in qualitative research interviews, participants struggle to articulate or verbalise their experiences. The purpose of this article is to detail a radical and novel way of using imaginative variation with interview participants, by asking the participants to engage with imaginative variation, in order to produce a rich and insightful experiential account of a phenomenon. We will discuss how the first author successfully used imaginative variation in this way in her study of the erotic experience of bondage, discipline, dominance & submission, and sadism & masochism (BDSM), before considering the usefulness of this technique when applied to areas of study beyond sexuality

    Low-speed inducers for cryogenic upper-stage engines

    Get PDF
    Two-phase, low-speed hydrogen and oxygen inducers driven by electric motors and applicable to the tug engine were designed and constructed. The oxygen inducer was tested in liquid and two-phase oxygen. Its head and flow performance were approximately as designed, and it was able to accelerate to full speed in 3 seconds and produce its design flow and head. The analysis of the two-phase data indicated that the inducer was able to pump with vapor volume fractions in excess of 60 percent. The pump met all of its requirements (duration of runs and number of starts) to demonstrate its mechanical integrity
    • 

    corecore