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DESIGN O F  RECURSIVE DIGITAL FILTERS HAVING SPECIFIED 

PHASE AND MAGNITUDE CHARACTERISTICS 

By Robert E. King 
Langley Research Center 

and 

Gregory W. Condon 
Langley Directorate, U.S. Army Air Mobility R&D Laboratory 

SUMMARY 

A method for a computer-aided design of a c lass  of optimum filters, having specifi- 
cations in the frequency domain of both magnitude and phase, is described. 
an  extension to the work of Steiglitz, uses  the Fletcher-Powell algorithm to minimize a 
weighted squared magnitude and phase criterion. 
design of fi l ters having specified phase as well as specified magnitude and phase compro- 
mise are presented. 

The method, 

Results using the algorithm for the 

INTRODUCTION 

Recursive fi l ters,  wherein the output sequence is both a function of the input as well 
as past  output samples, a r e  commonly used in digital signal processing and analysis. 
Such digital f i l ters  in many applications offer distinct advantages of precision and versa-  
tility over their continuous o r  analog counterparts. There exist a number of design pro- 
cedures for implementing digital f i l t e rs  (see ref. 1) each one of which s t r ives  to attain 
some analogy between discrete and continuous systems. Transform methods such as the 
matched-z, bilinear -2, and standard-z which lead to specific property invariances are 
available (see ref. 2) to the designer familiar with continuous fi l ter  design. 

For frequency-domain synthesis (see refs. 3 and 4), realization is normally by 
means of cascade o r  parallel combinations of pole and ze ro  pa i r s  in the complex plane. 
The synthesis problem is, in fact, reduced to one of approximation since the fi l ter  topol- 
ogy is generally specified. In none of the available design procedures, which can yield 
filters having excellent magnitude-frequency characterist ics,  however, do the resultant 
filters, in themselves, have particularly useful phase characterist ics.  
for  particular magnitude characterist ics by using any of the available design methods, 
there  is no control over the filter phase properties. 

Indeed, in striving 



In practice, it is often desirable to  specify a digital f i l ter  in the frequency domain 
by its phase (see ref. 5) or  even a compromise between magnitude and phase. The pro-  
cedure in this paper meets  these requirements through the use of an iterative computer- 
aided design leading to an optimum set of parameters  for a specified fi l ter  topology and 
is an extension of the technique described by Steiglitz (see ref. 6) for determining the 
optimum coefficients of a cascade fi l ter  having magnitude specifications alone. The 
extension makes possible the design of a new class  of digital filters having the prescr ibed 
phase characterist ics.  

SYMBOLS 

fil ter multiplier 

denominator of ith stage of H(z) at n k  

magnitude e r r o r  at a k  

phase e r r o r  at 

e r r o r  vector at flk 

derivative of e r r o r  vector at S2k with respect to  zero  frequency gain 

frequency a t  kth specification point, Hz 

sampling frequency, Hz 

unity gain discrete transfer function 

magnitude of H(z) at a k  

conjugate of H(z) at slk 

gradient vector of magnitude of H(z) at fik with respect to parameter 
vector 

imaginary par t  of quantity 

denotes fi l ter  stage 



-c 

Jk 
Jacobian at %, [ A* - alHklI  I 21 

ai5 I 

k sample point 

Mk specification magnitude at a k  

Nk numerator of ith stage of HXz) at slk 

F parameter vector 

Pi 

s'; (k) 

sl, (k) 

-c set of filter parameters  for the ith stage, ai, bi, ci, and di 

first system state of ith stage at  kth sample point 

second system state of ith stage at kth sample point 

R( ) real  part  of quantity 

ui (k) 

V 

input to  ith stage at kth sample point 

cri terion functional, that is, V(A,C) 

cri terion functional at ak ,  that is, Vk(A,lj) vk 

G reduced criterion functional, that is, V(A*,g) 

av/aA slope of cri terion functional with respect to  zero frequency gain 

a v k p s k  gradient vector of cri terion functional at a k  with respect to e r r o r  vector 
at Qk 

'k weighting matrix at a k  

magnitude weighting at a k  WkM 

phase weighting at ak W P  

wi(k) dummy variable of ith stage at kth sample point 
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digital filter discrete t ransfer  function 

output of ith stage at kth sample point 

transform variable 

j nStk discrete transform variable at ak, e 

specification phase a t  Qk, radians 

collective phase weight 

phase of H(z) at ak,  radians 

gradient vector of phase of H(z) at % with respect  to parameter  vector 

fractional frequency a t  kth specification point 

An aster isk on a symbol denotes an optimum value. A circumflex denotes optimi- 
zation with respect to A. A superscript  T denotes the transpose. 

DISCUSSION 

The Filter Form 

The fundamental advantages of the N-stage cascade canonical form of recursive 
digital f i l ter  whose signal flow graph is shown in figure 1 and which is described by the 
product operator 

Y(2) = AH(z) J 
a r e  (1) its relative insensitivity to perturbations in  the denominator coefficients, an 
important consideration in digital f i l ters,  especially of high order  and particularly where 
finite regis ter  lengths (see ref. 1) are involved; (2) its simplicity of implementation; and 
(3) the simplicity of factoring the fi l ter  operator to determine i t s  roots. This form has 
found extensive application in practical filters for  signal processing, and a version 
employing ser ia l  arithmetic (ref. 7) is commercially available. 

4 



For completeness, an alternative description of the fi l ter  is given in t e r m s  of the 
system states q i  and qa and clearly demonstrates the recursive nature of the filter. 
The set of difference equations describing the filter and required in developing a com- 
puter algorithm is presented. Thus, for  the ith stage in figure 1 at the kth sample point 

q’;(k + 1) = wi(k) 

q i (k  + 1) = q\(k) 

yi(k) = wi(k) + aiqi(k) + biqi(k) 

where 

is the input to the ith stage and is identical to the output of the (i - 1) stage and 

Ai =t 
The Synthesis Problem 

The design problem considered in this paper can be stated as follows: When the 
magnitude and phase specifications (Mk and 8k, respectively) at the kth fractional 
Nyquist frequencies fik = 2f@s (where fs is the sampling frequency in HZ) a r e  known, 
determine the se t  of optimum parameters  c* of an N-stage cascade fi l ter  having the 
form of equation (1) so  that the resultant digital f i l ter  will have a minimum sum squared 
magnitude and phase e r r o r  for all  specified frequencies. 

By constraining the fi l ter  topology, the optimum synthesis problem becomes one of 
parametric optimization with respect to a given criterion of fi t .  The composite cri terion 
which can weight the magnitude and phase requirements independently and as functions of 
frequency is chosen as the inner product 
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where 

+ 
ek = 

AIHkl -'k 

is the e r r o r  vector and 

is the diagonal weighting matrix. Clearly, V (A$) is a nonlinear function of the param- 
e te r  vector 5 = ( a l , b l , c~ ,d l , .  . . , a ~ , b ~ , c ~ , d ~ ) ~ ,  which involves the 4N fi l ter  coeffi- 
cients, and of the f i l ter  multiplier A. 

The Minimization Algorithm 

Through formal differentiation of the cri terion function (eq. (2)) with respect to the 
multiplier A, the minimization procedure can be slightly simplified to that of finding the 
minimum of a reduced functional ?(G) = V (A*,$ involving only 4N parameters.  
Thus 

and aV/aA=O implies 

o r  

* k  A =  

IHk12WkM 
k 

An additional necessary condition for existence of an extremum is that the gradient vector 
be zero; thereby, the optimum parameter vector F* is obtained. From equation (2) 
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where the (4N X 2) Jacobian zk is 

Clearly, each element of the gradient vector is the sum of two weighted functions of the 
magnitude and phase e r ro r .  By writing 

where Rk is the conjugate of Hk evaluated at  the fractional frequency nk, it is 
readily shown (see ref. 6), where Fi is the se t  of filter parameters  for the ith stage, 
that 

For  the cascaded filter topology in t e rms  of the elements of Fi, 

and 
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j 'rrak where, with Zk = e , 

By letting 

j @k 
H k =  lHkle 

it follows that 

@k = I(log, Hk) 

whence 

a@k = I($ log, Hk) = I(& 3) 
aP 

which takes on a particularly simple form for the cascade topology. For the ith stage 
parameters,  in fact, 
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and 

I. 

ad 

The special  case  of a one-stage (N = 1) filter is illustrated. Here 

and 

Similarly, 

ab 
k 

where 



and 

are the weighted e r r o r s .  
(specifications) need not be uniform and may, in fact, be intentionally unequal to allow for 
nonuniform frequency weighting. 

It is obvious that the frequency intervals of the input data 

Complementary Root Reflection and Stability 

In deriving the frequency response of a discrete operator by letting zk lie on the 
unit c i rc le  I?, it  is possible to take advantage of a unique property of the discrete t rans-  
form pertaining to its magnitude when a root lying outside the unit c i rc le  is imaged o r  
reflected into the unit circle.  
where zo is a root of the discrete transform lying outside the unit circle, is equal to 

It is easy to show that the magnitude of a phasor z - zo, 

Since zo has been assumed to be outside the unit circle,  l/zo must be inside, the 
t e rm Izo I correcting for  magnitude changes. Thus, if  in the optimization procedure a 
pole should s t ray  outside the unit c i rc le  and thereby lead to an unstable filter, root reflec- 
tion guarantees stability with no magnitude change. There is no analogous simple identity 
for  the phase of a reflected root. Experience with the procedure has  shown that provided 
the design requirements can be met by means of a stable fi l ter ,  that is, that a feasible 
solution exists, an optimum will indeed be found through repeated application of root 
reflection. 

The Computer Algorithm 

A complete listing of the fi l ter  design algorithm, which is an adaptation of the pro- 
The main program is te rmed STGZ3 

(1) FUNCT performs the functional and gradient 
gram written by Steiglitz, is given in the appendix. 
which calls four principal subroutines: 
computation for each iteration as well as putting out the final optimum parameters  and 
plots, (2) FLPWL is a Fletcher-Powell conjugate gradient routine, (3) INSIDE computes 
root reflection, and (4) ROOTS determines the poles and zeros  of the fi l ter .  
precision ari thmetic has  been employed. 

Single- 

When minimization of the functional has been attained in the f i r s t  pas s  or  the mini- 
mization algorithm has i terated 300 t imes,  a test is made to ascertain that all the roots 
are within the unit circle,  a necessary requirement for the poles for  stability reasons 
and for the zeros  to  insure minimum phase. If the design should resul t  in an unstable 

10 



configuration, the roots are reflected about the unit c i rc le  and minimization is resumed 
in a second pass.  
unit circle,  the program computes and pr ints  out the frequency response and commences 
plotting. 

between successive iterations E = ICnew - coldl  o r  the norm of the gradient vector 
falls below preassigned limits. 
filters but can be very  slow for the case of compromise fi l ters.  

If a minimum does indeed exist and all the roots then lie within the 

Minimization is deemed to  be achieved when the absolute difference in functionals 

Convergence is generally fast for  magnitude o r  phase 

When the design specifications cannot be met after LIM iterations (see appendix), 

Generally, feasible designs 
the program wil l  stop; this situation indicates that the optimum could not be found and the 
resultant characterist ic which may be unusable is plotted. 
have been determined in l e s s  than 2000 iterations. 

Minimization of the cri terion function does not guarantee determination of a global 
minimum but ra ther  determination of a local minimum. Depending upon the parameter 
vector utilized for initialization of the algorithm computation, different minima may be 
achieved. 
the ith-stage optimum parameter vector as the initial parameter vector for the (i + 1) 
stage of an N-stage fi l ter ,  yields lower minimum values of the cri terion function than 
does single-pass optimization. 

Experience has shown that stage-by-stage optimization, that is, utilization of 

APPLICATIONS 

Linear -Phase Fil ter 

This example considers a digital f i l ter  having application as a phase discriminator 
with a linear phase characterist ic and arb i t ra ry  magnitude characterist ic and is shown 
in figure 2. 
to unity, the multiplier 
phase characterist ic.  

In this example all magnitude weights were se t  to zero  and all phase weights 
A being arbi t rar i ly  made unity since it has no effect on the 

The phase requirements were 
specified. When an initial parameter  vector = (O,O, 0,0.25,0,0,0,O)T was used, the 
algorithm converged to the optimum, with E = in 52 iterations and a Control Data 
6600 computer t ime of 14 seconds. 
four places 

8k = 1 - 2Qk (0 5 Qk 5 I), and a two-stage fi l ter  w a s  

The optimum parameter values computed were to  

A = 1.0 

a1 = 0 b l  = -0.9871 c1 = 0 

a2 = 0 b2 = -0.9871 C2 = 0 

d l  = 0.0395 

d2 = -0.0127 

11 



It is interesting to  note that the phase requirements were met t o  within 0 . 0 0 8 ~  radian 
for  approximately 95 percent of the frequency range. 

Constant -Phase Filters 

Two cases were considered to obtain filters having constant phases of -s/2 and 
~ / 2  radians over a frequency range 0.3 5 52k 5 0.7. As in  the previous case, the form 
of the magnitude characterist ic was of no concern; hence, zero  magnitude weighting was 
specified. With the same initial parameter  state used in  the previous example, the 
first case (lag network) optimized in  1673 iterations and 42 seconds to yield a hyper- 
bolic magnitude characterist ic and phase e r r o r s  of less than 0 . 0 0 0 3 ~  radian throughout 
the specified band. 

The computed parameters  for the lag case  were 

A = 1.0 

a1 = 0.5580 b l  = -0.1857 ~1 = -0.4752 d l  = 0.0363 

a2 = 0.5580 b2 = -0.1857 ~2 = -0.3712 d2 = -0.5686 

The positive phase filter (lead network), however, took only 165 iterations and 
17 seconds to yield the desired phase characterist ic with e r r o r s  nowhere exceeding 
0 . 0 0 1 ~  radian in  the specified band. 

The optimum fil ter parameters  for  this second case  were determined to  be 

A =  1.0 

a1 = -0.4768 

a2 = -0.4768 

b l  = -0.1548 ~1 = 0.5022 

b2 = -0.1548 cz = 0.4515 

d l  = -0.1082 

d2 = -0.2008 

It is noted that for -0th cases,  the phase weights outside L e  specified band were set 
to zero,  and thereby allowed for arbi t rary phase in  these regions. Figures 3(a) and 3(b) 
show the resultant frequency characterist ics for  the lag and lead cases,  respectively, of 
two-stage fi l ters.  The combination of the two filters, although they have antagonistic 
magnitude characterist ics,  suggests the possibility of a phase-splitting digital network. 

12 



Limited-Band Constant-Gain Linear-Phase Fil ter 

The third example demonstrates a compromise design of a digital filter having 
constant-magnitude and linear -phase characterist ics,  over a limited frequency band, 
typical of phase discriminators. Here, except for h = 0, the specifications were stated 
as 

(0.3 2 ak 2 0.7) 

(Elsewhere) 

(0.3 5 n k  9 0.7) 

(Elsewhere) 

Equal e r r o r  and frequency weights were employed and the effects of changes in  X a r e  
shown in figure 4 for a two-stage design. Figure 4(a) shows the case of X = 0, that is, 
a magnitude-only filter being specified, and coincidentally yields the linear-phase-filter 
characterist ic derived in the f i r s t  example. Figures 4(b) and 4(c) show the 
magnitude and phase character is t ics  for the cases  of X = 10 and X = 1000, respectiveiy. 
The increasing weight on phase and resultant degradation in the magnitude characterist ic 
are shown. 

X = o :  

(See fig. 2.) 

The optimum parameters  were 

A = 0.2063 

al = 0.0000 b l  = -1.0000 c1 = 0.0000 d l  = 0.1539 

a2 = 0.0000 b2 = -1.0000 c2 = 0.0000 d2 = 0.1539 

h = 10: 

A = 0.3658 - 

a1 = -0.9754 b l  =0.7300 ~1 =0.4529 d l  = 0.7211 

a2 = 0.8632 . b2 = 0.5632 ~2 = -0.6119 d2 = 0.7443 

1 3  



x = 1000: 

A = 0.4232 

a1 = -1.1739 b l  = 0.8489 ~1 = 0.7596 dl  = 0.6691 

b2 = 0.8489 ~2 = -0.7596 d2 = 0.6691 a2 = 1.1739 

Low -Pass Zero -Phase Filter 

The fourth example considers a compromise filter, having two and three stages, 
with specifications that are intentionally conflicting. A fi l ter  described by 

(0.0 5 ak  2 0.5) 

(Elsewhere) 
6k =f 

Unspecified 

is specified. 

Figures 5 and 6 show the results for  the two- and three-stage designs, respectively, 
The degradation in the with figures 5(a) and 6(a) showing the magnitude-only (h = 0) case. 

magnitude characterist ics when greater emphasis is placed on the phase specifications 
is evident in figures 5(b) and 6(b) for  X = 10 and in figures 5(c) and 6(c) for X = 1000. 
Comparison of figure 6 with figure 5 demonstrates the improvement brought about by 
increasing the number of stages. The optimum parameters  for  the two-stage fi l ter  were 

h =o:  
A = 0.1196 

a1 = 1.0240 b l  = 1.0000 

a2 = 1.0240 b2 = 1.0000 

~1 = -0.1713 d l  = 0.7676 

~2 = -0.5324 d2 = 0.2286 
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x = 10: 

A = 0.4879 

a1 = 0.2018 b l  = 0.6684 ~1 = 0.3560 

a2 = 0.6597 b2 = 0.4335 ~2 = 0.0806 

x = 1000: 

A = 0.5343 

a1 = 0.0205 b l  = 0.7169 ~1 = -0.0836 

a2 = 0.6286 b2 = 0.7905 ~2 = 0.2123 

The optimum parameters  for the three-stage filter were 

x = o :  
A = 0.0510 

a1 = 0.8537 b l  = 1.0000 ~1 = -0.1068 

a2 = 0.8537 b2 = 1.0000 ~2 = -0.4046 

a3  = 0.8537 b3 = 1.0000 ~3 = -0.6799 

x = 10: 

A = 0.5109 

a1 = 1.3302 b l  = 0.5515 ~1 = -0.1731 

a2 = 0.6844 b2 = 0.7157 c2 = 1.1880 

a 3  = -0.0373 b3 = 0.7012 ~3 = 0.3825 

dl  = 0.4612 

d2 = 0.7671 

d l  = 0.6255 

d2 = 0.6681 

d l  = 1.0000 

d2 = 0.5990 

d3 = 0.2069 

d l  = 0.8097 

d2 = 0.5850 

d3 = 0.5262 
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h = 1000: 

A = 0.4515 

a1 = 1.5107 b l  = 0.5286 ~1 = -0.1771 dl = 0.8972 

a2 = 0.5825 b2 = 0.7490 ~2 = 1.3094 d2 = 0.4191 

a3 = -0.1663 b3 = 0.7485 c3 = 0.2002 d3 = 0.6393 

A three-stage design of this example is used to  demonstrate the existence of two distinct 
local minima, dependent upon the initial parameter  vector.  
pass  optimization was accomplished with 5 = (0, O,O, 0.25,0,0,0,  O)T for the initial 
parameter  vector and resulted in the optimum filter shown in figure 6(a). 
case,  a stage-by-stage optimization was accomplished by utilizing the optimum parameter  
vector from a two-stage design for the initial parameter  vector of a three-stage design 
and resulted in the optimum fil ter shown in figure 7. Comparison of these resul ts  demon- 
s t ra tes  the existence of two distinct local minima, the stage-by-stage minimization 
yielding superior resul ts .  

In the f i r s t  case,  a single- 

In the second 

CONCLUDING REMARKS 

A method has  been developed for a computer-aided design of cascade canonical 
digital f i l ters having prescr ibed magnitude o r  phase character is t ics  o r  a compromise 
between the two. 
allows for a rb i t ra ry  e r r o r  and frequency weighting. 
compromise f i l ters  have demonstrated the utility of the technique. 
is generally fast  for magnitude phase fi l ters,  it  may be slow for  the case of compromise 
fi l ters.  

The method, which uses  an unconstrained minimization algorithm, 
Representative designs of phase and 

Although convergence 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., February 17, 1972. 
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APPENDIX 

PROGRAM LISTING 

This appendix contains a program listing written fo r  the Control Data 6600 computer 
at the Langley Research Center, Hampton, Virginia, and is an adaptation of that written by 
Kenneth Steiglitz at Princeton University for the design of specified magnitude-only 
filters. 

00300? 
000303 
0 0 3 0 0 2  

000003  
0 0 0 0 0 7  
0000Q4 
090035 
onoo 1 1  
o o o n i l  

005014  

000n51 

0 0 0 0 5 4  

0 n ~ 0 6 i  

0000 12 

0000 3 1 
00oCI -41 

003051 

C030 5 6  

0100t.2 
0001 06 
0001 Oh 
OD01 1 7  
0001 17 
0C01 17 
0031 1 7  
0001 $1 

0001 41 
0901 47 
0031 4.2 

0001 5 7  
0001 47 
0001 7 6  
C!r)017L. 
0007c2 
0 0 0 2  1’3 
0007 1 5  
0007 1 c, 
O O G Z Z  2 
0 0 0 2 2 3  
000 22 6 
00023 0 

onot 5 5  

OC! 3 
CC14 
CCL 5 
001 5 
0c17 

O C L  9 
0020 
oc2 1 
0c32 
O C 2  3 
007 4 
co2  i 
002 5 

C O i R  
0g25 
cc3  0 
0c31 
C03? 
CC?7 

c c 3 5  
C C ?  5 
00?7 
O C T R  
0’)3,“ 

0 0 2 7  

0C42 
CC4? 

UG45 
C946 

CC50 
c c 5  z 
C C C  z 
‘C A -  ’= 
c;‘ f r .  
cc  =’ 
(-7 ‘:i 
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APPENDIX - Continued 

005 7 
005 8 
cc59 
0060 
CC6 1 
0 0 6 2  
OC6 3 
0044 

0c66 
QC57 
OC6 8 
0059 
0070 
007 1 
0072 
cc73 
0074 
007 5 
0076 
0077 
0c78 
0079 
0 0 8 0  
OCR 1 
0 0 8 2  
0c83 
0c84 
0085 
0086 
0087 
0c8r 
0c89 
0c90 
C09 1 
g092 
C C ? 3  
0054 
c0g5 

0096 
cc97 
0C38 
0099 
0100 
0101 
c102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
011 I 

0113 
0114 
0115 
0116 
0117 
011 9 
0119 
0120 
0121 
C12? 
0123 
0124 
e12 5 

0112, 

. ,.. 



APPENDIX - Continued 

009673 
00 0 7 i) 1 
003701. 

00 I 7 0 7  
007731  
0007  3 1  
0007  i 3 
0 0 0 7 5 3  

001711 

001011  
00 I r) 1 h 

001017  
001O 70 

O O l P 7 3  

0 0 1 0 3 1  

001045 
00105 1 
001n51  
001055 

001 ) 7 6  

003707  

00,3760 

on in 1 

o o i n 7 i  

o o i n 7 7  

0 0 1 0 4 ~  

0 0 ~ 0 5 7  

001 I cm 
o n i i i n  

0 0 1  1 4 4  

0 0 1 1  14  
001 1 2 7  

0 0 1  1 46 
001156  
0011  57 
00: 1 7 7  
001207  
001212 
0 0 1 2 1 4  
O 0 1 7 1 h  
001217  

012b  
0 : 2 7  
0128  
01.29 
0130  
0 1 3 1  
0:32 
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Figure 6. - Continued. 
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Figure 6. - Concluded. 
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