DESIGN OF RECURSIVE DIGITAL FILTERS HAVING SPECIFIED PHASE

AND MAGNITUDE CHARACTERISTICS

by
Robert E. King
Langley Research Center
and
Gregory W. Condon

Langley Directorate,
U.S. Army Air Mobility RED Laboratory

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - APRIL 1972

0133397
NASA TN D-6709
4. Title and Subtitle

DESIGN OF RECURSIVE DIGITAL FILTERS HAVING
SPECIFIED PHASE AND MAGNITUDE CHARACTERISTICS
7. Author(s)

Robert E. King; and Gregory W. Condon, Langley Directorate, U.S. Army Air Mobility R\&D Laboratory
9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, Va. 23365
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546
15. Supplementary Notes
16. Abstract

A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.
17. Key Words (Suggested by Author(s))

Digital filter
Computer-aided design
Phase specification
18. Distribution Statement

Unclassified - Unlimited
20. Security Classif. (of this page)
Unclassified

| 21. No. of Pages | 22. Price* |
| :---: | :---: | :---: |
| 39 | $\$ 3.00$ |

[^0]
DESIGN OF RECURSIVE DIGITAL FILTERS HAVING SPECIFIED PHASE AND MAGNITUDE CHARACTERISTICS

By Robert E. King
Langley Research Center
and
Gregory W. Condon
Langley Directorate, U.S. Army Air Mobility R\&D Laboratory

SUMMARY

A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.

INTRODUCTION

Recursive filters, wherein the output sequence is both a function of the input as well as past output samples, are commonly used in digital signal processing and analysis. Such digital filters in many applications offer distinct advantages of precision and versatility over their continuous or analog counterparts. There exist a number of design procedures for implementing digital filters (see ref. 1) each one of which strives to attain some analogy between discrete and continuous systems. Transform methods such as the matched-z, bilinear $-z$, and standard-z which lead to specific property invariances are available (see ref. 2) to the designer familiar with continuous filter design.

For frequency-domain synthesis (see refs. 3 and 4), realization is normally by means of cascade or parallel combinations of pole and zero pairs in the complex plane. The synthesis problem is, in fact, reduced to one of approximation since the filter topology is generally specified. In none of the available design procedures, which can yield filters having excellent magnitude-frequency characteristics, however, do the resultant filters, in themselves, have particularly useful phase characteristics. Indeed, in striving for particular magnitude characteristics by using any of the available design methods, there is no control over the filter phase properties.

In practice, it is often desirable to specify a digital filter in the frequency domain by its phase (see ref. 5) or even a compromise between magnitude and phase. The procedure in this paper meets these requirements through the use of an iterative computeraided design leading to an optimum set of parameters for a specified filter topology and is an extension of the technique described by Steiglitz (see ref. 6) for determining the optimum coefficients of a cascade filter having magnitude specifications alone. The extension makes possible the design of a new class of digital filters having the prescribed phase characteristics.

SYMBOLS

A	filter multiplier
$D_{k}^{\text {i }}$	denominator of ith stage of $\mathrm{H}(\mathrm{z})$ at Ω_{k}
$\mathrm{E}_{\mathrm{k}}^{\mathrm{M}}$	magnitude error at Ω_{k}
$\mathrm{E}_{\mathrm{k}}^{\phi}$	phase error at Ω_{k}
$\overrightarrow{\mathrm{e}}_{\mathrm{k}}$	error vector at Ω_{k}
$\partial \vec{e}_{\mathrm{k}} / \partial \mathrm{A}$	derivative of error vector at Ω_{k} with respect to zero frequency gain
f_{k}	frequency at kth specification point, Hz
f_{S}	sampling frequency, Hz
$\mathrm{H}(\mathrm{z})$	unity gain discrete transfer function
$\left\|\mathrm{H}_{\mathrm{k}}\right\|$	magnitude of $\mathrm{H}(\mathrm{z})$ at Ω_{k}
\bar{H}_{k}	conjugate of $\mathrm{H}(\mathrm{z})$ at Ω_{k}
$\partial\left\|\mathrm{H}_{\mathrm{k}}\right\| / \partial \overrightarrow{\mathrm{p}}$	gradient vector of magnitude of $\mathrm{H}(\mathrm{z})$ at Ω_{k} with respect to parameter vector
I()	imaginary part of quantity
i, . . .,N	denotes filter stage

\vec{J}_{k}	Jacobian at $\Omega_{\mathrm{k}},\left[\mathrm{A}^{*} \frac{\partial\left\|\mathrm{H}_{\mathrm{k}}\right\|}{} \mathrm{l}\right.$
k	sample point
M_{k}	specification magnitude at Ω_{k}
$\mathrm{N}_{\mathrm{k}}^{\mathrm{i}}$	numerator of ith stage of $\mathrm{H}(\mathrm{z})$ at Ω_{k}
-	parameter vector
$\overrightarrow{\mathrm{p}}_{\mathrm{i}}$	set of filter parameters for the ith stage, a_{i}, b_{i}, c_{i}, and d_{i}
$\mathrm{q}_{1}^{\mathrm{i}}(\mathrm{k})$	first system state of ith stage at kth sample point
$q_{2}^{i}(\mathrm{k})$	second system state of ith stage at kth sample point
R()	real part of quantity
$\mathrm{u}_{\mathrm{i}}(\mathrm{k})$	input to ith stage at kth sample point
V	criterion functional, that is, $\mathrm{V}(\mathrm{A}, \overrightarrow{\mathrm{p}})$
V_{k}	criterion functional at Ω_{k}, that is, $V_{k}(\mathrm{~A}, \overrightarrow{\mathrm{p}})$
$\hat{\mathrm{V}}$	reduced criterion functional, that is, $\mathrm{V}\left(\mathrm{A}^{*}, \overrightarrow{\mathrm{p}}\right)$
$\partial \mathrm{V} / \partial \mathrm{A}$	slope of criterion functional with respect to zero frequency gain
$\partial \mathrm{V}_{\mathrm{k}} / \partial \overrightarrow{\mathrm{e}}_{\mathrm{k}}$	gradient vector of criterion functional at Ω_{k} with respect to error vector at Ω_{k}
$\vec{W}_{\text {k }}$	weighting matrix at Ω_{k}
$\mathrm{W}_{\mathrm{k}}^{\mathrm{M}}$	magnitude weighting at Ω_{k}
$\mathrm{W}_{\mathrm{k}}{ }^{\text {¢ }}$	phase weighting at Ω_{k}
w^{i} (k)	dummy variable of ith stage at kth sample point

$\mathrm{Y}(\mathrm{z})$	digital filter discrete transfer function
$\mathrm{y}_{\mathrm{i}}(\mathrm{k})$	output of ith stage at kth sample point
z	transform variable z_{k}
discrete transform variable at $\Omega_{\mathrm{k}}, \quad \mathrm{e}^{\mathrm{j} \pi \Omega_{\mathrm{k}}}$ θ_{k} specification phase at Ω_{k}, radians λ collective phase weight ϕ_{k} phase of $\mathrm{H}(\mathrm{z})$ at Ω_{k}, radians $\partial \phi_{\mathrm{k}} / \partial \overrightarrow{\mathrm{p}}$ gradient vector of phase of $\mathrm{H}(\mathrm{z})$ at Ω_{k} with respect to parameter vector Ω_{k} fractional frequency at kth specification point	

An asterisk on a symbol denotes an optimum value. A circumflex denotes optimization with respect to A. A superscript T denotes the transpose.

DISCUSSION

The Filter Form

The fundamental advantages of the N -stage cascade canonical form of recursive digital filter whose signal flow graph is shown in figure 1 and which is described by the product operator

$$
\left.\begin{array}{l}
Y(z)=A \prod_{i=1}^{N} \frac{1+a_{i} z^{-1}+b_{i} z^{-2}}{1+c_{i} z^{-1}+d_{i} z^{-2}} \tag{1}\\
Y(z)=A H(z)
\end{array}\right\}
$$

are (1) its relative insensitivity to perturbations in the denominator coefficients, an important consideration in digital filters, especially of high order and particularly where finite register lengths (see ref. 1) are involved; (2) its simplicity of implementation; and (3) the simplicity of factoring the filter operator to determine its roots. This form has found extensive application in practical filters for signal processing, and a version employing serial arithmetic (ref. 7) is commercially available.

For completeness, an alternative description of the filter is given in terms of the system states q_{1}^{i} and q_{2}^{i} and clearly demonstrates the recursive nature of the filter. The set of difference equations describing the filter and required in developing a computer algorithm is presented. Thus, for the ith stage in figure 1 at the kth sample point

$$
\begin{aligned}
& w^{i}(k)=A_{i} u_{i}(k)-c_{i} q_{1}^{i}(k)-d_{i} q_{2}^{i}(k) \\
& q_{1}^{i}(k+1)=w^{i}(k) \\
& q_{2}^{i}(k+1)=q_{1}^{i}(k) \\
& y_{i}(k)=w^{i}(k)+a_{i} q_{1}^{i}(k)+b_{i} q_{2}^{i}(k)
\end{aligned}
$$

where

$$
u_{i}(k)=y_{i-1}(k)
$$

is the input to the ith stage and is identical to the output of the (i -1) stage and

$$
A_{i}= \begin{cases}A & (i=1) \\ 1 & (i \neq 1)\end{cases}
$$

The Synthesis Problem

The design problem considered in this paper can be stated as follows: When the magnitude and phase specifications (M_{k} and θ_{k}, respectively) at the kth fractional Nyquist frequencies $\Omega_{k}=2 f_{k} / f_{S}$ (where f_{S} is the sampling frequency in Hz) are known, determine the set of optimum parameters $\overrightarrow{\mathrm{p}}^{*}$ of an N -stage cascade filter having the form of equation (1) so that the resultant digital filter will have a minimum sum squared magnitude and phase error for all specified frequencies.

By constraining the filter topology, the optimum synthesis problem becomes one of parametric optimization with respect to a given criterion of fit. The composite criterion which can weight the magnitude and phase requirements independently and as functions of frequency is chosen as the inner product

$$
\begin{equation*}
\mathrm{V}(\mathrm{~A}, \overrightarrow{\mathrm{p}})=\sum_{\mathrm{k}}\left\langle\overrightarrow{\mathrm{e}}_{\mathrm{k}}, \overrightarrow{\mathrm{~W}}_{\mathrm{k}} \overrightarrow{\mathrm{e}}_{\mathrm{k}}\right\rangle=\sum_{\mathrm{k}} \mathrm{~V}_{\mathrm{k}} \tag{2}
\end{equation*}
$$

where

$$
\overrightarrow{\mathrm{e}}_{\mathrm{k}}=\left[\begin{array}{c}
\mathrm{A}\left|\mathrm{H}_{\mathrm{k}}\right|-\mathrm{M}_{\mathrm{k}} \\
\phi_{\mathrm{k}}-\theta_{\mathrm{k}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{E}_{\mathrm{k}}^{\mathrm{M}} \\
\mathrm{E}_{\mathrm{k}}^{\phi}
\end{array}\right]
$$

is the error vector and

$$
\overrightarrow{\mathrm{W}}_{\mathrm{k}}=\left[\begin{array}{cc}
\mathrm{W}_{\mathrm{k}}^{\mathrm{M}} & 0 \\
0 & \lambda \mathrm{~W}_{\mathrm{k}}^{\phi}
\end{array}\right]
$$

is the diagonal weighting matrix. Clearly, $V(A, \vec{p})$ is a nonlinear function of the parameter vector $\vec{p}=\left(a_{1}, b_{1}, c_{1}, d_{1}, \ldots, a_{N}, b_{N}, c_{N}, d_{N}\right)^{T}$, which involves the $4 N$ filter coefficients, and of the filter multiplier A.

The Minimization Algorithm
Through formal differentiation of the criterion function (eq. (2)) with respect to the multiplier A, the minimization procedure can be slightly simplified to that of finding the minimum of a reduced functional $\hat{\mathrm{V}}(\overrightarrow{\mathrm{p}})=\mathrm{V}\left(\mathrm{A}^{*}, \overrightarrow{\mathrm{p}}\right)$ involving only 4 N parameters. Thus

$$
\frac{\partial \mathrm{V}}{\partial \mathrm{~A}}=\sum_{\mathrm{k}}\left\langle\frac{\partial \overrightarrow{\mathrm{e}}_{\mathrm{k}}}{\partial \mathrm{~A}}, \frac{\partial \mathrm{~V}_{\mathrm{k}}}{\partial \overrightarrow{\mathrm{e}}_{\mathrm{k}}}\right\rangle=2 \sum_{\mathrm{k}}\left[\left|\mathrm{H}_{\mathrm{k}}\right| \mathrm{w}_{\mathrm{k}}^{\mathrm{M}}: 0\right] \overrightarrow{\mathrm{e}}_{\mathrm{k}}
$$

and $\partial \mathrm{V} / \partial \mathrm{A}=0$ implies

$$
2 \sum_{k}\left|H_{k}\right| W_{k}^{M}\left(A^{*}\left|H_{k}\right|-M_{k}\right)=0
$$

or

$$
\begin{equation*}
A^{*}=\frac{\sum_{\mathrm{k}}\left|\mathrm{H}_{\mathrm{k}}\right| \mathrm{W}_{\mathrm{k}}^{\mathrm{M}_{\mathrm{M}_{\mathrm{k}}}}}{\sum_{\mathrm{k}}\left|\mathrm{H}_{\mathrm{k}}\right|^{2} \mathrm{~W}_{\mathrm{k}}^{\mathrm{M}}} \tag{3}
\end{equation*}
$$

An additional necessary condition for existence of an extremum is that the gradient vector be zero; thereby, the optimum parameter vector $\overrightarrow{\mathrm{p}}^{*}$ is obtained. From equation (2)

$$
\begin{equation*}
\frac{\partial \hat{\mathbf{V}}}{\partial \overrightarrow{\mathrm{p}}}=2 \sum_{\mathrm{k}}\left\langle\overrightarrow{\mathrm{~J}}_{\mathrm{k}}, \overrightarrow{\mathrm{w}}_{\mathrm{k}} \overrightarrow{\mathrm{e}}_{\mathrm{k}}\right\rangle \tag{4}
\end{equation*}
$$

where the $(4 N \times 2)$ Jacobian \vec{J}_{k} is

$$
\begin{equation*}
\overrightarrow{\mathrm{J}}_{\mathrm{k}}^{\mathrm{T}}=\nabla_{\overrightarrow{\mathrm{p}}} \overrightarrow{\mathrm{e}}_{\mathrm{k}}=\left[\mathrm{A}^{*} \frac{\partial\left|\mathrm{H}_{\mathrm{k}}\right|}{\partial \overrightarrow{\mathrm{p}}}: \frac{\partial \phi_{\mathrm{k}}}{\partial \overrightarrow{\mathrm{p}}}\right]^{\mathrm{T}} \tag{5}
\end{equation*}
$$

Clearly, each element of the gradient vector is the sum of two weighted functions of the magnitude and phase error. By writing

$$
\left|\mathrm{H}_{\mathrm{k}}\right|^{2}=\mathrm{H}_{\mathrm{k}} \overline{\mathrm{H}}_{\mathrm{k}}
$$

where \bar{H}_{k} is the conjugate of H_{k} evaluated at the fractional frequency Ω_{k}, it is readily shown (see ref. 6), where $\overrightarrow{\mathrm{p}}_{\mathrm{i}}$ is the set of filter parameters for the ith stage, that

$$
\frac{\partial\left|\mathrm{H}_{\mathrm{k}}\right|}{\partial \overrightarrow{\mathrm{p}}_{\mathrm{i}}}=\frac{1}{\left|\mathrm{H}_{\mathrm{k}}\right|} \mathrm{R}\left(\overline{\mathrm{H}}_{\mathrm{k}} \frac{\partial \mathrm{H}_{\mathrm{k}}}{\partial \overrightarrow{\mathrm{p}}_{\mathrm{i}}}\right)
$$

For the cascaded filter topology in terms of the elements of \vec{p}_{i},

$$
\begin{aligned}
& \frac{\partial\left|\mathrm{H}_{\mathrm{k}}\right|}{\partial \mathrm{a}_{\mathrm{i}}}=\left|\mathrm{H}_{\mathrm{k}}\right| \mathrm{R}\left(\frac{\mathrm{z}_{\mathrm{k}}^{-1}}{\mathrm{~N}_{\mathrm{k}}^{\mathrm{i}}}\right) \\
& \frac{\partial\left|\mathrm{H}_{\mathrm{k}}\right|}{\partial \mathrm{b}_{\mathrm{i}}}=\left|\mathrm{H}_{\mathrm{k}}\right| \mathrm{R}\left(\frac{\mathrm{z}_{\mathrm{k}}^{-2}}{\mathrm{~N}_{\mathrm{k}}^{\mathrm{i}}}\right) \\
& \frac{\partial\left|\mathrm{H}_{\mathrm{k}}\right|}{\partial c_{\mathrm{i}}}=-\left|\mathrm{H}_{\mathrm{k}}\right| \mathrm{R}\left(\frac{z_{\mathrm{k}}^{-1}}{D_{\mathrm{k}}^{\mathrm{i}}}\right)
\end{aligned}
$$

and

$$
\frac{\partial\left|H_{k}\right|}{\partial d_{i}}=-\left|H_{k}\right| R\left(\frac{z_{k}^{-2}}{D_{k}^{i}}\right)
$$

where, with $z_{k}=e^{j \pi \Omega_{k}}$,

$$
N_{k}^{i}=N^{i}\left(z_{k}\right)=1+a_{i} z_{k}^{-1}+b_{i} z_{k}^{-2}
$$

and

$$
D_{k}^{\mathrm{i}}=D^{\mathrm{i}}\left(\mathrm{z}_{\mathrm{k}}\right)=1+\mathrm{c}_{\mathrm{i}} \mathrm{z}_{\mathrm{k}}^{-1}+\mathrm{d}_{\mathrm{i}} \mathrm{z}_{\mathrm{k}}^{-2}
$$

By letting

$$
H_{\mathrm{k}}=\left|\mathrm{H}_{\mathrm{k}}\right| e^{j \phi_{\mathrm{k}}}
$$

it follows that

$$
\phi_{\mathbf{k}}=\mathrm{I}\left(\log _{\mathrm{e}} \mathrm{H}_{\mathrm{k}}\right)
$$

whence

$$
\frac{\partial \phi_{\mathrm{k}}}{\partial \overrightarrow{\mathrm{p}}}=\mathrm{I}\left(\frac{\partial}{\partial \overrightarrow{\mathrm{p}}} \log _{\mathrm{e}} \mathrm{H}_{\mathrm{k}}\right)=\mathrm{I}\left(\frac{1}{\mathrm{H}_{\mathrm{k}}} \frac{\partial \mathrm{H}_{\mathrm{k}}}{\partial \overrightarrow{\mathrm{p}}}\right)
$$

which takes on a particularly simple form for the cascade topology. For the ith stage parameters, in fact,

$$
\begin{aligned}
& \frac{\partial \phi_{k}}{\partial a_{i}}=I\left(\frac{z_{k}^{-1}}{N_{k}^{i}}\right) \\
& \frac{\partial \phi_{k}}{\partial b_{i}}=I\left(\frac{z_{k}^{-2}}{N_{k}^{i}}\right) \\
& \frac{\partial \phi_{k}}{\partial c_{i}}=-I\left(\frac{z_{k}^{-1}}{D_{k}^{i}}\right)
\end{aligned}
$$

and

$$
\frac{\partial \phi_{\mathrm{k}}}{\partial \mathrm{~d}_{\mathrm{i}}}=-\mathrm{I}\left(\frac{\mathrm{z}_{\mathrm{k}}^{-2}}{\mathrm{D}_{\mathrm{k}}^{\mathrm{i}}}\right)
$$

The special case of a one-stage ($\mathrm{N}=1$) filter is illustrated. Here

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{k}}=\mathrm{A} \frac{1+\mathrm{az}}{\mathrm{k}} \mathrm{~B}^{-1}+\mathrm{bz}_{k}^{-2} \\
& 1+\mathrm{cz}_{\mathrm{k}}^{-1}+\mathrm{dz}_{k}^{-2} \\
& \hat{\mathrm{~V}}=\sum_{\mathrm{k}}\left(\mathrm{~A}^{*}\left|\mathrm{H}_{\mathrm{k}}\right|-\mathrm{M}_{\mathrm{k}}\right)^{2} \mathrm{~W}_{\mathrm{k}}^{\mathrm{M}}+\lambda \sum_{\mathrm{k}}\left(\phi_{\mathrm{k}}-\theta_{\mathrm{k}}\right)^{2} \mathrm{~W}_{\mathrm{k}}^{\phi}
\end{aligned}
$$

and

$$
\frac{\partial \hat{\mathrm{V}}}{\partial \mathrm{a}}=2 \sum_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}}^{\mathrm{M}_{\mathrm{W}}} \mathrm{M}_{\mathrm{k}} \frac{\partial\left|\mathrm{H}_{\mathrm{k}}\right|}{\partial \mathrm{a}}+\lambda \mathrm{E}_{\mathrm{k}}^{\phi} \mathrm{W}_{\mathrm{k}}^{\phi} \frac{\partial \phi_{\mathrm{k}}}{\partial \mathrm{a}}\right)=\sum_{\mathrm{k}}\left[\mathrm{Q}_{\mathrm{k}}^{\mathrm{M}_{\mathrm{R}}}\left(\frac{\mathrm{z}_{\mathrm{k}}^{-1}}{\mathrm{~N}_{\mathrm{k}}^{\mathrm{i}}}\right)+\lambda \mathrm{R}_{\mathrm{k}}^{\phi} \mathrm{I}\left(\frac{\mathrm{z}_{\mathrm{k}}^{-1}}{\mathrm{~N}_{\mathrm{k}}^{\mathrm{i}}}\right)\right]
$$

Similarly,

$$
\begin{aligned}
& \frac{\partial \hat{V}}{\partial b}=\sum_{k}\left[Q_{k}^{M} R\left(\frac{z_{k}^{-2}}{N_{k}^{i}}\right)+\lambda R_{k}^{\phi}\left(\frac{z_{k}^{-2}}{N_{k}^{i}}\right)\right] \\
& \frac{\partial \hat{V}}{\partial c}=\sum_{k}\left[Q_{k}^{M_{R}}\left(\frac{z_{k}^{-1}}{D_{k}^{i}}\right)+\lambda R_{k}^{\phi}\left(\frac{z_{k}^{-1}}{D_{k}^{i}}\right)\right] \\
& \frac{\partial \hat{V}}{\partial d}=\sum_{k}\left[Q_{k}^{M} R\left(\frac{z_{k}^{-2}}{D_{k}^{i}}\right)+\lambda R_{k}^{\phi} I\left(\frac{z_{k}^{-2}}{D_{k}^{i}}\right)\right]
\end{aligned}
$$

where

$$
\mathrm{Q}_{\mathrm{k}}^{\mathrm{M}}=2 \mathrm{E}_{\mathrm{k}}^{\mathrm{M}_{\mathrm{k}}} \mathrm{~W}_{\mathrm{k}}^{\mathrm{M}}\left|\mathrm{H}_{\mathrm{k}}\right|
$$

and

$$
\mathrm{R}_{\mathrm{k}}^{\phi}=2 \mathrm{E}_{\mathrm{k}}^{\phi} \mathrm{W}_{\mathrm{k}}^{\phi}
$$

are the weighted errors. It is obvious that the frequency intervals of the input data (specifications) need not be uniform and may, in fact, be intentionally unequal to allow for nonuniform frequency weighting.

Complementary Root Reflection and Stability

In deriving the frequency response of a discrete operator by letting z_{k} lie on the unit circle Γ, it is possible to take advantage of a unique property of the discrete transform pertaining to its magnitude when a root lying outside the unit circle is imaged or reflected into the unit circle. It is easy to show that the magnitude of a phasor $z-z_{0}$, where z_{0} is a root of the discrete transform lying outside the unit circle, is equal to

$$
\left|z-z_{0}\right|=\left|z_{0}\right|\left|z-\frac{1}{z_{0}}\right| ; z \in \Gamma
$$

Since z_{0} has been assumed to be outside the unit circle, $1 / z_{0}$ must be inside, the term $\left|z_{0}\right|$ correcting for magnitude changes. Thus, if in the optimization procedure a pole should stray outside the unit circle and thereby lead to an unstable filter, root reflection guarantees stability with no magnitude change. There is no analogous simple identity for the phase of a reflected root. Experience with the procedure has shown that provided the design requirements can be met by means of a stable filter, that is, that a feasible solution exists, an optimum will indeed be found through repeated application of root reflection.

The Computer Algorithm

A complete listing of the filter design algorithm, which is an adaptation of the program written by Steiglitz, is given in the appendix. The main program is termed STGZ 3 which calls four principal subroutines: (1) FUNCT performs the functional and gradient computation for each iteration as well as putting out the final optimum parameters and plots, (2) FLPWL is a Fletcher-Powell conjugate gradient routine, (3) INSIDE computes root reflection, and (4) ROOTS determines the poles and zeros of the filter. Singleprecision arithmetic has been employed.

When minimization of the functional has been attained in the first pass or the minimization algorithm has iterated 300 times, a test is made to ascertain that all the roots are within the unit circle, a necessary requirement for the poles for stability reasons and for the zeros to insure minimum phase. If the design should result in an unstable
configuration, the roots are reflected about the unit circle and minimization is resumed in a second pass. If a minimum does indeed exist and all the roots then lie within the unit circle, the program computes and prints out the frequency response and commences plotting.

Minimization is deemed to be achieved when the absolute difference in functionals between successive iterations $\epsilon=\left|\hat{\mathrm{V}}_{\text {new }}-\hat{\mathrm{V}}_{\text {old }}\right|$ or the norm of the gradient vector falls below preassigned limits. Convergence is generally fast for magnitude or phase filters but can be very slow for the case of compromise filters.

When the design specifications cannot be met after LIM iterations (see appendix), the program will stop; this situation indicates that the optimum could not be found and the resultant characteristic which may be unusable is plotted. Generally, feasible designs have been determined in less than 2000 iterations.

Minimization of the criterion function does not guarantee determination of a global minimum but rather determination of a local minimum. Depending upon the parameter vector utilized for initialization of the algorithm computation, different minima may be achieved. Experience has shown that stage-by-stage optimization, that is, utilization of the ith-stage optimum parameter vector as the initial parameter vector for the $(i+1)$ stage of an N -stage filter, yields lower minimum values of the criterion function than does single-pass optimization.

APPLICATIONS

Linear-Phase Filter

This example considers a digital filter having application as a phase discriminator with a linear phase characteristic and arbitrary magnitude characteristic and is shown in figure 2. In this example all magnitude weights were set to zero and all phase weights to unity, the multiplier A being arbitrarily made unity since it has no effect on the phase characteristic.

The phase requirements were $\theta_{\mathrm{k}}=1-2 \Omega_{\mathrm{k}}\left(0 \leqq \Omega_{\mathrm{k}} \leqq 1\right)$, and a two-stage filter was specified. When an initial parameter vector $\overrightarrow{\mathrm{p}}=(0,0,0,0.25,0,0,0,0) \mathrm{T}$ was used, the algorithm converged to the optimum, with $\epsilon=10^{-4}$, in 52 iterations and a Control Data 6600 computer time of 14 seconds. The optimum parameter values computed were to four places

$$
\begin{array}{llll}
A=1.0 & & \\
\mathrm{a}_{1}=0 & \mathrm{~b}_{1}=-0.9871 & c_{1}=0 & d_{1}=0.0395 \\
\mathrm{a}_{2}=0 & \mathrm{~b}_{2}=-0.9871 & c_{2}=0 & \mathrm{~d}_{2}=-0.0127
\end{array}
$$

It is interesting to note that the phase requirements were met to within 0.008π radian for approximately 95 percent of the frequency range.

Constant-Phase Filters

Two cases were considered to obtain filters having constant phases of $-\pi / 2$ and $\pi / 2$ radians over a frequency range $0.3 \leqq \Omega_{\mathrm{k}} \leqq 0.7$. As in the previous case, the form of the magnitude characteristic was of no concern; hence, zero magnitude weighting was specified. With the same initial parameter state used in the previous example, the first case (lag network) optimized in 1673 iterations and 42 seconds to yield a hyperbolic magnitude characteristic and phase errors of less than 0.0003π radian throughout the specified band.

The computed parameters for the lag case were

$$
\begin{array}{llll}
\mathrm{A}=1.0 & \\
\mathrm{a}_{1}=0.5580 & \mathrm{~b}_{1}=-0.1857 & c_{1}=-0.4752 & d_{1}=0.0363 \\
\mathrm{a}_{2}=0.5580 & \mathrm{~b}_{2}=-0.1857 & c_{2}=-0.3712 & d_{2}=-0.5686
\end{array}
$$

The positive phase filter (lead network), however, took only 165 iterations and 17 seconds to yield the desired phase characteristic with errors nowhere exceeding 0.001π radian in the specified band.

The optimum filter parameters for this second case were determined to be

$$
\begin{array}{lll}
\mathrm{A}=1.0 & \\
\mathrm{a}_{1}=-0.4768 & \mathrm{~b}_{1}=-0.1548 & \mathrm{c}_{1}=0.5022
\end{array} \mathrm{~d}_{1}=-0.1082
$$

It is noted that for both cases, the phase weights outside the specified band were set to zero, and thereby allowed for arbitrary phase in these regions. Figures 3(a) and 3(b) show the resultant frequency characteristics for the lag and lead cases, respectively, of two-stage filters. The combination of the two filters, although they have antagonistic magnitude characteristics, suggests the possibility of a phase-splitting digital network.

Limited-Band Constant-Gain Linear-Phase Filter

The third example demonstrates a compromise design of a digital filter having constant-magnitude and linear-phase characteristics, over a limited frequency band, typical of phase discriminators. Here, except for $\lambda=0$, the specifications were stated as

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{k}}=\left\{\begin{array}{lr}
1 & \left(0.3 \leqq \Omega_{\mathrm{k}} \leqq 0.7\right) \\
0 & (\text { Elsewhere })
\end{array}\right. \\
& \theta_{\mathrm{k}}=\left\{\begin{array}{lr}
1-2 \Omega_{\mathrm{k}} & \left(0.3 \leqq \Omega_{\mathrm{k}} \leqq 0.7\right) \\
0 & (\text { Elsewhere })
\end{array}\right.
\end{aligned}
$$

Equal error and frequency weights were employed and the effects of changes in λ are shown in figure 4 for a two-stage design. Figure $4(a)$ shows the case of $\lambda=0$, that is, a magnitude-only filter being specified, and coincidentally yields the linear-phase-filter characteristic derived in the first example. (See fig. 2.) Figures 4(b) and 4(c) show the magnitude and phase characteristics for the cases of $\lambda=10$ and $\lambda=1000$, respectiveiy. The increasing weight on phase and resultant degradation in the magnitude characteristic are shown. The optimum parameters were
$\lambda=0:$

$$
\begin{array}{llll}
\mathrm{A}=0.2063 & & \\
\mathrm{a}_{1}=0.0000 & \mathrm{~b}_{1}=-1.0000 & \mathrm{c}_{1}=0.0000 & \mathrm{~d}_{1}=0.1539 \\
\mathrm{a}_{2}=0.0000 & \mathrm{~b}_{2}=-1.0000 & \mathrm{c}_{2}=0.0000 & \mathrm{~d}_{2}=0.1539
\end{array}
$$

$\lambda=10:$

$$
\begin{array}{llll}
\mathrm{A}=0.3658 & \\
\mathrm{a}_{1}=-0.9754 & \mathrm{~b}_{1}=0.7300 & \mathrm{c}_{1}=0.4529 & \mathrm{~d}_{1}=0.7211 \\
\mathrm{a}_{2}=0.8632 & \mathrm{~b}_{2}=0.5632 & \mathrm{c}_{2}=-0.6119 & \mathrm{~d}_{2}=0.7443
\end{array}
$$

$\lambda=1000:$

$$
\begin{array}{llll}
A=0.4232 & & \\
a_{1}=-1.1739 & \mathrm{~b}_{1}=0.8489 & \mathrm{c}_{1}=0.7596 & \mathrm{~d}_{1}=0.6691 \\
\mathrm{a}_{2}=1.1739 & \mathrm{~b}_{2}=0.8489 & \mathrm{c}_{2}=-0.7596 & d_{2}=0.6691
\end{array}
$$

Low-Pass Zero-Phase Filter

The fourth example considers a compromise filter, having two and three stages, with specifications that are intentionally conflicting. A filter described by

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{k}}=\left\{\begin{array}{lr}
1.0 & \left(0.0 \leqq \Omega_{\mathrm{k}}<0.5\right) \\
0.5 & \left(\Omega_{\mathrm{k}}=0.5\right) \\
0.0 & \left(0.5<\Omega_{\mathrm{k}} \leqq 1.0\right)
\end{array}\right. \\
& \theta_{\mathrm{k}}=\left\{\begin{array}{lr}
0 & \left(0.0 \leqq \Omega_{\mathrm{k}} \leqq 0.5\right) \\
\text { Unspecified } & \text { (Elsewhere) }
\end{array}\right.
\end{aligned}
$$

is specified.
Figures 5 and 6 show the results for the two- and three-stage designs, respectively, with figures 5 (a) and 6(a) showing the magnitude-only ($\lambda=0$) case. The degradation in the magnitude characteristics when greater emphasis is placed on the phase specifications is evident in figures 5(b) and 6(b) for $\lambda=10$ and in figures 5(c) and 6(c) for $\lambda=1000$. Comparison of figure 6 with figure 5 demonstrates the improvement brought about by increasing the number of stages. The optimum parameters for the two-stage filter were $\lambda=0:$

$$
\begin{array}{llll}
A=0.1196 & & \\
a_{1}=1.0240 & b_{1}=1.0000 & c_{1}=-0.1713 & d_{1}=0.7676 \\
a_{2}=1.0240 & b_{2}=1.0000 & c_{2}=-0.5324 & d_{2}=0.2286
\end{array}
$$

$\lambda=10:$
$\mathrm{A}=0.4879$
$a_{1}=0.2018$
$b_{1}=0.6684$
$c_{1}=0.3560$
$\mathrm{d}_{1}=0.4612$
$a_{2}=0.6597$
$\mathrm{b}_{2}=0.4335$
$c_{2}=0.0806$
$\mathrm{d}_{2}=0.7671$
$\lambda=1000:$

$$
\mathrm{A}=0.5343
$$

$\mathrm{a}_{1}=0.0205$
$b_{1}=0.7169$
$c_{1}=-0.0836$
$\mathrm{d}_{1}=0.6255$
$a_{2}=0.6286$
$\mathrm{b}_{2}=0.7905$
$c_{2}=0.2123$
$d_{2}=0.6681$

The optimum parameters for the three-stage filter were $\lambda=0$:

$$
\mathrm{A}=0.0510
$$

$a_{1}=0.8537$
$b_{1}=1.0000$
$c_{1}=-0.1068$
$d_{1}=1.0000$
$\mathrm{a}_{2}=0.8537$
$\mathrm{b}_{2}=1.0000$
$c_{2}=-0.4046$
$\mathrm{d}_{2}=0.5990$
$\mathrm{a}_{3}=0.8537$
$b_{3}=1.0000$
$c_{3}=-0.6799$
$\mathrm{d}_{3}=0.2069$
$\lambda=10:$

$$
\mathrm{A}=0.5109
$$

$\mathrm{a}_{1}=1.3302$	$\mathrm{~b}_{1}=0.5515$	$\mathrm{c}_{1}=-0.1731$	$\mathrm{~d}_{1}=0.8097$
$\mathrm{a}_{2}=0.6844$	$\mathrm{~b}_{2}=0.7157$	$\mathrm{c}_{2}=1.1880$	$\mathrm{~d}_{2}=0.5850$
$\mathrm{a}_{3}=-0.0373$	$\mathrm{~b}_{3}=0.7012$	$\mathrm{c}_{3}=0.3825$	$\mathrm{~d}_{3}=0.5262$

$\lambda=1000:$

$$
\begin{array}{llll}
\mathrm{A}=0.4515 & & \\
\mathrm{a}_{1}=1.5107 & \mathrm{~b}_{1}=0.5286 & c_{1}=-0.1771 & \mathrm{~d}_{1}=0.8972 \\
\mathrm{a}_{2}=0.5825 & \mathrm{~b}_{2}=0.7490 & c_{2}=1.3094 & \mathrm{~d}_{2}=0.4191 \\
\mathrm{a}_{3}=-0.1663 & \mathrm{~b}_{3}=0.7485 & c_{3}=0.2002 & d_{3}=0.6393
\end{array}
$$

A three-stage design of this example is used to demonstrate the existence of two distinct local minima, dependent upon the initial parameter vector. In the first case, a singlepass optimization was accomplished with $\vec{p}=(0,0,0,0.25,0,0,0,0)^{T}$ for the initial parameter vector and resulted in the optimum filter shown in figure 6(a). In the second case, a stage-by-stage optimization was accomplished by utilizing the optimum parameter vector from a two-stage design for the initial parameter vector of a three-stage design and resulted in the optimum filter shown in figure 7. Comparison of these results demonstrates the existence of two distinct local minima, the stage-by-stage minimization yielding superior results.

CONCLUDING REMARKS

A method has been developed for a computer-aided design of cascade canonical digital filters having prescribed magnitude or phase characteristics or a compromise between the two. The method, which uses an unconstrained minimization algorithm, allows for arbitrary error and frequency weighting. Representative designs of phase and compromise filters have demonstrated the utility of the technique. Although convergence is generally fast for magnitude phase filters, it may be slow for the case of compromise filters.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., February 17, 1972.

APPENDIX

PROGRAM LISTING

This appendix contains a program listing written for the Control Data 6600 computer at the Langley Research Center，Hampton，Virginia，and is an adaptation of that written by Kenneth Steiglitz at Princeton University for the design of specified magnitude－only filters．

009003 00000^{3} 00000^{2} 000003 000003 000004 000005 000011 000011 000012 000014 000 O31 000031 00005

003051
000054 000058 003051 $0) 00 \in 2$ 00010K 000106 000117 000112 000117 000117 000141

000141 00014 ？ 007147 000155 000157 000157 000176 000174 000つの？ 000213 000715 000214 0002 二2 000223 000226 000230

```
            PRCGRAM STG73IINPUT, RUTFUT,TAPE5=INPIJT,TAPFE=[UTPLT,PUNCHI
            FXTFRNAL FUNCT OC14
            IINFNSISN H(IRG),X(1t),G(1+) CO15
            CTNNON/RAW/W(1(O).Y(100).N.PHASF!)1OC),ALAMCA,FR,WTM(LCO). OOIS
            C.WTOILOJI.KTYD OC17
            CCNNCN/RAWl/ICALL.KCALL.LIF
            CALL CALCCMP
                0C19
            CALL LFRJY 0020
            WRITEIG.NII OC21
            51 FRFNAT(* INPUT DATA*) 00フ2
            M=0
            aC N}=M+
            PFAC,(=, \geq1)N(M),Y(N),PHASEC(N),WTY{N),WTR(M)
                                    21 FRPNAT(5F10.5)
            WPITF(E.2Z)M,W(M),Y(N),FHASEC(N),WTN(M),WTP(N)
```



```
            C. * W「M=*.F7.4.* WTP=*.F7.41 0029
            IF(n\M).LT.1.CCIGCTOミ0 COZO
            Dil 15 J=1.16 0031
    1F X(J)=0.00
            x(4)=.?5
                            003?
                            CC3?
            GC RFACIJ,SOIL,LIN,FST,FPS.HNAX,AIAMFA,FR,KTYP
60 FMRNAT(2I5.5FIC.5.IIC)
                                    Cc35
            IF(FQ.IT..OOI) FK=1. OC35
            N=4휴
            IF(FAF,5) CGG.FAQ
&gR CONTIM:UF
                            0%27
        WPITFIG,SIIL,LIN,FST,FPS.FNAX,FK,ALAMCA
    61 FIJKNAT(* L=*.I2.* LIN=*,I5,* ECT=*,FIN.5.* FFS=*.FlO.5.
            C* hNAX=*,F1O.5.* FRFCRANCE=*.FIO.5.* LANB)A=*,FIC.ES OC42
            IC.ALI =0
                                    CC43
    GF KCALL =O
            CALL FLPNLIFUNCT,N,X,F,G,FST,FPS,FC,IFP,H)
            CALL RCOTS(N,x)
                                    0045
            CALL INSTDEIN.X,KFLACI
                                    0045
            WHITF(6.26)IEK.KFLAG.ICGLL.KCALL
    >E FCPNAT!* IFR=*.I5.* KFLAG=*,I5.* ICALL=%,IF,* KCALL=*,I5)
            IF(KCALL.GT. 2CC) Gi) TO C&
            IF(IKFLAG.AF.C.CD.IER.NE.O).AND.I(ALL.LF.LIN) GCTCGQ
            CALLKCITS(N.X) CO50
            ICALL=-10 CC51
            CAIL FLVCTIN,X,F,G,HNAX) CC52
            guTCCa
ЭCO CALL (ALPLT(Co,^.,Oつ?)
    STOP
    EvD
CC=
O!ge
CC-4
Core
```


APPENDIX－Continued

angolo ononlo onjoln coonln nnoola nocolo

0 CJO10 conol nnOOL2 nnon 14 on） 015 00）O1； 0nocion 07040 neoras nonr 4 ？ Onnn $4=$ $00004+$ 000のラ： のクロクラィ Oの） 057 nnol．t． noo：のミ 00）！？r 007147 00015．7 00ク： 50 U001 5 0n2167 00077^{1} 000＞0？ cno 04 $003>0=$ ヘNOPO7 ヘOこ？ 0^{7}
00（ ）11 0กつつ14 00：）？ 71 0クロフフ4 กロコプラ ロッロアクロ 000ファา COOP4 ${ }^{\circ}$ のヘロテニッ 0ヘプら $0007+5$ 000，72 OのO2：$=$ 0クへ3！ 7 000277 OกO322 กのワマム？ nのO35 000352 のOO： 0003ヶi 00）スか4 の吹ヶя
「ついるが 0กころ7つ 0.30377 $0004 \mathrm{C}, 7$ 0004% ？ －03＋19 On．）414 $003 \div 10$

```
            ClABR`!TIVF FIJNCT(A,X.F.G.HNAX) 0057
```



```
            IIMFNSIBN XPL(ZCO),YPL(ZOC),CX(2`C),CY(2O))
            1)INGASTO\because H{!&4),X(1&), (11t),VHT(10O),F(100)
            C.C.MFIEX 7OUAR.7K.77RUH.77CUF2
            CLMDIFX 7(ICRI.TUM{ICO.4).JFNIIOC.4).O.GEAR,ZCUF,ZCURZ.ONFC
            CCMN(N/2JW/W(ICC),Y(1)C),N,FHASET(ICO).AINNDA,FR,HTM(IOO).
            C KTPI:Oへ).KTYF
            C[NN]N/DANI/ICALI,KCALL.LIN
            1NF心=C.NPLX(1.00.).ON)
            PI=-3.141572;5 35ac70
            K=N/4
            IF(ICAIL.NF.OIGCTCIRI
            nr 10> I=1.*
```



```
    10: 1I=0.Cい
                                0072
            A 2=C.00
            On 4) T=:.N
            7Cしぐ=711)
                    0074
            7CHRT=7C10*7CHF
```



```
            OC コ2 J=1.K 0C78
            J4=(J-1)*4 0079
            TUM(I.J)=1.70+X(J4+1)* 年UF+X(J4+2)*7CIJF? 0080
```



```
    z: O=0*TUN(I.J)/DFAII,J) 0082
    CFAR= CU*jG(D)
    YHT(I)= =*QHAP
    \thereforeZ=Aつ+YHT(I)*hTM(1)
0084
    YHT(I)= 50RT(YHT(I))
    4) A!=\Delta!+YHT(I)*Y(I)*WTN(I)
    IF(KTYD.^!E.N) R.C TA the
    A=A1/A?
    fir Tr GST
AEh A=1.
6&7 CPNTIVGF
    or <!? I
    7CL<=ノ!!) 0094
```



```
    7\Omega=CMOLX(1..n.) 0096
    OH\DeltaS=?.
    0)[ E.1] j=1,K
    |<l=(, J-1)*4
    0078
```



```
    0100
    |A1=7!J\Mk
    7Aつ=CNP\X(0..-ミ.)*70ト\DeltaF
    PHAS= DHAS + ATANZ1l,A2.7A1)
    7?=7\cap*7 \n\triangleN
```



```
    7\Delta1=7つ2\DeltaU
```



```
    PHAS=PHAS-ATAN=(/\DeltaZ.IAI)
    7心=20/7.2HAF
&ll CRNTTNUE
    DHAII)=-'HHAS/FI
    }12 PHF(I)=OHA {I\-PHASFC(I)
        )「 巨.J J=1.!^
    =7r,(J)=).Jn
        VI=0.
        v2=?.
        「い<< 1=1,.M
        7(い,R=7!!)
        7(11こ)=7C10*2C.1F
        YHT\I!=A*YHT| I)
        c(I)=v&T(I)-v(I)
        VI=VI + E(I)*E{ I|**TM{||
        Vて=V r的保(I)*PFS(I)*NTF(I)}012
0124
    v=F(I)*mTM(I)
```


APPENDIX－Continued

007427 $001+7$ ？ $0034>5$ 00044 1 000451 0034\％： $00347=$ onjeñ DOOF1／ 07351～ 000 5？ cojar？ 0กグックフ 00リの5 oncs 7 ？
 000613 onohla 0nos？n 0006？！ 000634 000657 000657 OODRAR onORbs 000ヶ力6 000ヶ73

000673 000701 $00970!$ 00）707 $00) 707$ 000731 000731 000753 000753 009750 001711

001011 001016 001016 001017 001070 001071 001073 $0010>7$ 001032 001047 001045 00105 ） 001051 001055 001057 001176 $00110 n$ 001117 001114 001127 001144 001146 001156 001152 001177 001207 001212 001214 001716 001217

```
    O\Gamma 4>つJ=1.K 0120
    J4=(.J-\)告 0:27
```



```
    ;(Jム+l)=`(Jム+?)+J*2ClR 0120
    G(J~+?)=0(J4+2)+O*7CLQ? 0130
    i.)=-`.*!, *YHT|\1/EN(1,J) 0131
    C:(Jち+3)=r(J4+2)+)*7CUR 0:22
    (i(J4+4)=R(J++6)+1)*7CUF? 0133
4วつ r(NTIN:JE
            ')行 }J={.
            14=(1- !) & 4
            (ild4+l)=r,(J4+i)+T*NIMA(,| ZCLF/TlN(1,J))
```



```
            ;(J<+4)=T(.)<+4)+T*A[**(-7ClF?/つ巨N(I.J))
+> C.NTIN:JF
            F=V1+\DeltaLAMDA*V2
            ICALI =ICALL+1
            KCALL=KCALL+1
            IF(KRALL.GT. 'CCIOFTURN
            IFI(IC,ALL/IO)*1O.EO.ICALL-I)WRITF(A.2=)ICALL.F.(;(J),J=1,N)
                0144
    วE FCRMATI* CALL NC.*.l4.* F=*.FI5.9/( 25x.4F!5.R)| 0145
            IFIICALL.GT.?\CO) TO) TC 45C
            IFIICALL.GT.OJRETURN
            CO Tn 449
    4FC IF(ICALL.GT.LIN+1) GC TO 44C
            RETURN
C......PFINT TUT
0148
    44% WDITEI%.50)F
    EC FORMATI* FINAL FUNCTISN VAILF=%.FIF.Q1 O150
            NRITF(f.51)A
        51 FOFMAT(* A=#,F1E.8)
            WPITF(6.52)(X(J),J=1,N)
        52 FORNAT(* FINAL x =*/(***4FlF.bl)
            WRITF(f,54)(G(J),J=1,N)
        54 FIIRMAT(* FINAL GRADIENT =*/(***.4FIF.&))
            \Piत 55 I=1.M
        55 WRITE(6,55)I,W(I),Y(I),YHT(I),E(I), PHASFFIII), PHA(I),PHE(I)
    56 FITRNATI*I=*.I?.* W=*.FE.5,* Y=*,FR.E.* YHT=*,FR.5,* E=*.FR.5,
            r. # PHASFD=*,F8.5,* PHA=*,FF.5.* DFE=&,FQ.jl
            WHITF(5.59)K
    5¢ F[RNATI* FINAL TABLE FOR At,I 2.* STAGE FILTFR*)
            YMIN:3=0.
            YMAX3?=0.
            YNAX11=0.
            S=F之/200.
            \capO t0 I=1.201
            FFFO=S*FLOATII-1)
            ZCUR= CFXPI CNPIX(O.CO.FRFG#PI)I
            ZCUR? = ICUR*7C.UR
            D= C.MPLX(1.OO.C.OC)
            PHASE=0.00
            DC G1 J=1.K
            j4=(J-2)*4
            OHAR=L'NEO+X(J4+1)*2CLR+X(J4+?)* ZCUR?
            AI=ORAR
            AR=C4PLX(0.00,-1.00)*QEAR
            PHASF=PHASE+ ATANZ(A2. AI)
            0=L&OPAR
            OBAR=[BNF)+X(J4+2)*ZC(UK+X(J4+4)*Z「LF?
            Al=CA\DeltaR
            A? =CMP1\times(O.OO.-1.CO)*MBAR
            PHASF=PHASF- ATANO(A2.A1)
    G1 D=O/LRAO
            A1=0^ CONJG(0)
            \Delta1=\Delta* SORT(\Delta1)
            PHASF=-PHASF/P!
            RMFCAIII=FPEO
            AMAGII)=AI OL89
0149
                0151
                                    0:5?
                01う3
            MASF=0.oO
                            C154
0155
0155
0:57
0158
C157
C157
015?
01*1
0102
0:42
0164
0165
c16t
0167
C16%
-167
0169
C17C
0171
0:7?
0173
C:74
0175
0175
017%
0177
0177
0178
0179
0179
C1R1
ClR1
0183
0193
0195
0186
0198
            PH.ACFXIII=PHASF 
```


APPENDIX－Continued

$001>21$		IF（FHASE－YMAX33） $201.3 C 1.4 C 1$	0191
$0017 ? 6$	4 Cl	YMAX ${ }^{\text {P }}$ 3＝PHASF	0192
001230	3 C ？	r．ontinus	0193
001230		IF（DHASE－YMIN33）402．3C2．3C2	0194
001233	4 C 2	YM1N3 3＝－HASF	0195
001235	$30 ?$	CCATINUE	0195
001735		IF（AT－YMAX12） $2 \mathrm{SC} .3 \mathrm{CC,4CO}$	0197
001240	4 CO	YMAXII $=A 1$	0198
001242	3 CO	COn TI NUF	0199
001247	6C	WFITF1S．S2IFREG．PHASE．A1	0200
001751	62		0201
	C SCAI	E COMPUTATIUNS	0202
001261		IYMAXIL＝YMAX11＋．9c90	0203
001764		YN $\Delta \times 1=F L T A T(I Y N A X I I)$	0204
00：256		IFIHMAX．FQ．O．）COCI TR 3 3	0205
001767		$Y M A X I=H M A X$	0205
001270	33^{2}	CONTINUE	0207
001770		I YNAXミ3＝YMAX3？ Y ．C¢9	0209
001773		YMAX2 $=$ FLOAT（IYNAX23）	0209
001275		IYMTNここ Y YMINE 2 －．9¢99	0212
001300		YMIN＝FL．JAT（IYNIN 3 ）	$0<11$
001301		$\Delta X N=1$ Or F／IFS／2）	0212
001302		$A Y N=1$ OHMAGNITUCES	C213
OC1304		$A F R=730 . * F R$	0214
001706		$N F R=70$	02：3
	C NAGA	itude（crimputed－fkegleacy plot	0216
001307			0217
		AYN，OJ	0218
	C NAGN	ITUCF（DESIRFII－FPFOUENCY plot	021%
001377			0220
001347		AYM＝1 OH PHASE／FI	0221
	C PHAS	E－FRFGUENCY PICT	0222
Oロ1231			0223
	（		0224
	C PliAs	¢（Ciくfofil－F2FOUJFNCY DLCT	0225
orla			0226
	C		0227
Cos 41.		\therefore FTH：V	0228
nn：411		「AD	0229
			0230
003915			0231
00071：		（GMN $\operatorname{CN/2AW1/!~CAIL.KCALI,LIN~}$	
0000.9			0233
an＠rop		frikrall．gT．̇rri rin Til 7 ？	
nounz？		IFIIGALEST．LIN）（\％Tr フフa	
90） 0 ミニ		C－T $\mathrm{Cl}^{\text {¢ }}$	
の○プニ5	？ 3 j	IFD＝？	
，（0） 37		「FTUM	
	G：7	15R＝？	
OnOn¢		Krunt＝0）	0235
00J041		$v ?=\+V$	0236
0（0）${ }^{\text {a }}$		$\backslash 2=V\rangle+v$	0237
000042		，21－A $2+2$	C238
OnOn4 5	$\therefore \quad$	$\kappa=\mathrm{v}=1$	0239
Cnonci			0240
の（T） 51		$\mathrm{H}(\mathrm{K})=1.00$	0241
037） 5 ＝		A．$J=\wedge-1$	0242
000054			0243
（n）ran	$?$	$)^{\prime \prime}$ j L＝？ 0 ，	0244
ornos）		$k \mathrm{l}=\mathrm{k}+\mathrm{l}$	0245

APPENDIX－Continued

oconat	3	$H(K L)=0.00$	0246
conrisa	4	$K=K L+i$	0247
onon7？	う	KruNT＝KCUVT + ？	0248
¢0 or 7：		Weritit -.5011 KCOL T	0249
00017 ：	50.1		0250
ก0ロ10！		－ $\mathrm{LD} \mathrm{D}=\mathrm{F}$	0251
nnolio			0252
－00？ 07		$\mathrm{K}=\mathrm{N}+\mathrm{J}$	0253
OnJ110		$H(K)=G(1)$	0254
ncoll4		$k=K+N$ ．	0255
OC7：15		H（K）＝X（J）	0255
（0）1 ${ }^{\text {Pr }}$		$k=1+y^{\prime}$ ？	0257
$00.21 ?$ ？		$T=0.00$	0258
nool 2 －		¢0 2 $1=1 . v$	0259
Co） 124		$T=T-r .1 \mid)=4(k)$	0260
nool 3 ！		1F（L－J） 5 ， 7.7	0261
nod： 34	1.	$K=\langle+1-1$	0262
0nn：37		； 0 T．7 μ	0263
Q0．7137	7	$k=k+1$	0264
00314	\cdots	こ「NTIV	0265
0n 2144	\rightarrow	$\mathrm{H}(\mathrm{J})=\mathrm{T}$	0266
000150		DY $=\mathrm{C} .00$	0267
000150		HNRM $=0.0 .0$	0268
000151		GNRN＝0．0）	0269
000153		On $10 \mathrm{~J}=1 . \mathrm{N}$	0270
000154			0271
000150		GNRN＝GNRM＋ARS（C）${ }_{\text {G }}$ ）	0272
000163	10	DY＝DY＋H（J）＊G（J）	0273
000173		IFIDY 1 1，51．51	0274
000174	11	IF（HNRN／GNRM－EPS）51．51．12	0275
000200	12	$\mathrm{F} Y=\mathrm{F}$	0276
000201		ALFA $=2.00 *$（FST－F）／OY	0277
000204		$\triangle M B \Gamma A=1.00$	0278
000705		IFIALFAI 15．15．13	0279
$0007 \mathrm{C7}$	13	IF（ALFA－AMBDA）14．15．15	C260
000） 12	14	$A M B C A=\triangle L F A$	0281
000214	15	$A L F A=0.30$	0282
000215	1ϵ	$F X=F Y$	0283
000216		DX $=\mathrm{CY}$	0284
000227		DC $17 \mathrm{I}=1, \mathrm{~N}$	0285
$0007 ? 2$	17	X（I）＝X（I）＋AMACA＊H（I）	0296
000231		CALL FUNCTIN，X，F，G，HMAX）	C289
000243		IFIKCALL．GT．3OC）GO TO 724	
000746		IF（ICALL．GT．LIN）GO TO 724	
000251		GП TO 918	
000251	724	IFR＝3	
000253		RFTURN	
000253	¢18	$F Y=F$	
000254		OY $=$ C． 00	0292
000755		DO 19［＝1．N	0293
000757	18	$D Y=C Y+G(1) * H I I)$	0294
000766		IF（OY）19．26． 22	0297
000267	19	IF（FY－FX）20．22．22	0298
000277	20	$\triangle M B D A=\triangle M B C A+\triangle L F A$	C299
000774		$A L F A=\triangle M Q D A$	0300
070275		$F R R C R=1 . E 10$	0301
000276		IF（HNRM＊AMRDA－ERRDR） 16.15 .21	0302
000307	21	I E R＝？	0303
000304		RETURN	0304
000304	22	$T=0.00$	0305
000305	23	IF（ $\triangle M B \cap A) 24,36,24$	0306
000306	24	$Z=3.00 *(F X-F Y) / A M B D A+D X+D Y$	0307
000314		ALFA＝AMAXI（ AES（Z），$A B S(0 X)$ ，ABS（DY）	0308
000326		CALFA $=$ Z／ALFA	0309

APPENDIX－Continued

000327		DALFA $=$ CALFA＊DALFA－DX／ALFA＊［Y／ALFA	0310
000337		IF（DALFA）51．25．25	0311
000335	25	W＝ALFA＊SORTICALFA）	0312
000340		ALFA $=(D Y+W-Z) * A M B D A /(D Y+2 \cdot C O * W-D X)$	0313
000351		Dก 26 I $=1 . N$	0314
000356	26	X（I）$=$ X（I）＋（T－ALFA） $\mathrm{H}_{(1)}^{(I)}$	0315
000366		CALL FUNCTIN，X，F，G，HNAXI	0320
000400		IFIKCALL．GT． 3001 GO IO 725	
000403		IFIICALL．GT．LIN）GO TO 725	
000406		GO TO 919	
000406	725	$I E R=3$	
000410		RFTLRN	
0004！ 9	919	IF（F－FX）27．27．28	
000413	27	IF（F－FY）36．36．29	0323
000416	28	DALFA $=0.00$	0324
000417		DG ？$\quad 1=1, N$	0325
000421	29	CALFA＝DALFA＋G（I）＊H（I）	0326
000431		IF（CALFA） $30,33.33$	0329
000431	3 C	IF（F－FX）32．31．23	0330
$000+34$	31	IF（EX－［ALFA） 22.36 .32	0321
000436	32	$F X=F$	0332
000437		DX＝CALFA	0333
000440		$T=A L F A$	0334
00044 ？		$\triangle M B C A=A L F A$	0335
000443		GT TH ？ 3	033 5
000443	33	IFIFY－F）35．34．35	0337
000445	34	IFICY－C．ALFA） 35.36 .35	0338
000447	35	$F Y=F$	0339
000450		$T Y=$ CALFA	0340
000451		$\triangle M B C A=\triangle M B D A-\triangle L F A$	0341
000454		GO In 22	0342
000454	36	Dก $37 \mathrm{~J}=1 \cdot \mathrm{~N}$	0343
000456		$\mathrm{K}=\mathrm{N}+\mathrm{J}$	0344
000457		$H(K)=G(J)-H(K)$	0345
000463		$K=K+N$	0346
000464	37	H（K）$=X(1)-H(K)$	0347
000477		IF（OLDF－F＋FPS）52．38．39	0348
000476	38	IFR＝0	0349
000477		IF（KOUNT－N 42.39 .39	0350
000501	39	$T=0.00$	0351
$00050 ?$		$Z=0.00$	0352
000502		DC $40 \mathrm{~J}=1 . \mathrm{N}$	0353
000504		$\mathrm{K}=\mathrm{N}+\mathrm{J}$	0354
coosem		$w=H(k)$	0355
00cs10		$K=K+\lambda$,	0356
00051 ？		$T=T+A P S(H\{K))$	0357
000514	40		0358
Cos52：		IFIHVRN－FPS）41．41．42	0359
000ヶ3	41	IFIT－FPS）5t．5t．4？	0360
$000=31$	47	IFIKCUNT－LIMIT；42．5）．5C	0361
nove 34	43	$\triangle L F \Delta=C .(T)$	0362
000535		Mn $47 \mathrm{~J}=1$ ， N	0363
000527		$k=J+N$ ？	0364
000540		$\cdots=C .00$	0365
00.544		OC 4＊L $=1, N^{\prime}$	0366
00.7542		$k I=N+1$.	0367
000544		$N=W+H(K L) * H(K)$	0368
00n55		IF（L－J）44．45．4E	0369
00フラ54	44	$K=K+N-L$	0370
COO5 57		GC TM 4 ¢	0371
000557	45	$k=k+1$	0372
00056］	46	rentivuf	0373
000564		$K=N+J$	0374
000565		$A L F A=A L F A+W * H(K)$	0375

APPENDIX－Continued

000577	47	H（J）$=W$	0376
000576			0377
coos00	48	$K=N ? 1$	0378
$00060 ?$			0379
c00503		$K \mathrm{~L}=\mathrm{N} 2+\mathrm{L}$	0380
000605		Oก $49 \mathrm{~J}=\mathrm{L}$ ． N	0381
OOODOF		$\mathrm{A}_{\mathrm{I}} \mathrm{J}=\mathrm{N} \boldsymbol{\lambda}+\mathrm{J}$	0382
0006C7		$H(K)=H(K)+H(K L) * H(N J) / Z-H(L) * H(J) / \Delta L F A$	0383
000く？	49	$K=K+1$	0384
00063？		TO T） 5	0385
000634	5 G	$I F P=1$	0385
000636		PFTURN	0387
OnO636	51	クU $5>\mathrm{J}=1, \mathrm{~N}$	0388
000647		$k=N \geqslant+J$	0389
000044	52	$X(J)=H(K)$	0390
000647		C．ALL FUNCT（N，X．F．G．HNAX）	0353
000661			
000664		IFIITALL．gT．LIN）GO in 726	
000ちら7		GOT TH G 20	
0006ヵ7	$77 t$	IFR＝3	
000671		FFTUFN	
000671	$5 ? \mathrm{C}$	It（GVRM－5PS）¢5．5E．5？	
000674	うミ	IF（IFR）55．54．54	0396
000475	54	IFR $=-1$	0397
COフ700		GC Tl 1	0398
00.9700	55	1FR＝〕	0399
000701	56	RETURN	0400
000707		¢ ND	0401

000006 000006 000006 000007 000011 000014 000016 000020 000022

000024 000025 000027 000031 000033 000035 000051 000051 000054 000060 000064 000066

000066 000071 000071 000072 000074 000076 000077

SUBROUTINE INSIDE（N，X，XFLAG）
DIMENSION X（16）
$J=-1$
$K F L A G=0$
$10 \mathrm{~J}=\mathrm{J}+$ ？
IFIJ．GT．NIRETURN
e＝－．500＊X（J）
$C=x(1)+1)$
DISC＝e＊e－C
IF（OISC．LE．O．00）GOTO2O
C．．．．．．REAL ROOTS
DISC＝SORT（DISC）
R1 $=8+$ CISC
R2＝B－DISC
CRI $=A B S(R 1)$
DR2 $=A B S(R 2)$
IFIOR1．LE．1．00．AND．DR2．LE．1．00）GOTO10
$K F L A G=1$
IF（DR1．GT．1．001R1 $=1.00 / R 1$
IF（DR2．GT．1．00）R2 $=1.00 / R 2$
$x(J)=-1.00 *(R 1+R 2)$
X（J＋1）＝R1＊R2
GCTOIO
C．．．．．．CEMPLEX ROOTS
20 IFIC．LE． 1.00 ）GOTO10
KFLAG＝1
$\mathrm{C}=1.00 / \mathrm{C}$
$x(J+1)=C$
$x(J)=x(J) * C$
GOTOLO
END

APPENDIX - Concluded

000005 000005 000010 000010 000011 000013 000017 000021 000023 000025

000027 000030 000032 000035 000044 000044

000046
000052 000055 000070 000070 000072
SUBROUTINE ROOTS(N,X) 0433
DIMENSICN X(16) 0434
WRITE(6,40) C435
40 FORMAT(* ROOTS*/6X,*REAL*,11X,*1MAG*,11X,*REAL*,11X**IMAG*) 0436
$J=-1$ 04370438
IF(J.GT.NIRETURN C4 39
$B=-500 * X(J)$ C440
$C=X(J+1)$C441
DISC=B*B-C 0442
IF (DISC.LE. O.00) GOTO20 0443
C.......REAL RCOTS 0444
DISC = SORT(DISC) C445R1 $=\mathrm{B}+\mathrm{DISC}$
$R 2=B-D I S C$
C446WRITE(E, 30)R1,R20447
30 FORMAT (* \&,F15.8.15X,F15.\&)
0448
GOTOLO
Complex roots 04510449
20 DISC $=$ SORT $(-1.00 * D I S C I$ 0452
DI SCM $=-1.00 * D I S C$ 0453
WRITE(6.50)B,DISC,B,DISCM 0454
50 FORMAT (* *.4F15.8) 0455
GOTO10 0456
END 0457

REFERENCES

1. Gold, Bernard; and Rader, Charles M.: Digital Processing of Signals. McGraw-Hill Book Co., Inc., c. 1969.
2. Golden, Roger M.: Digital Filter Synthesis by Sampled-Data Transformation. IEEE Trans. Audio \& Electroacoust., vol. AU-16, no. 3, Sept. 1968, pp. 321-329.
3. Kaiser, J. F.: Digital Filters. System Analysis by Digital Computer, Franklin F. Kuo and James F. Kaiser, eds., John Wiley \& Sons, Inc., c.1966, pp. 218-285.
4. Rader, Charles M.; and Gold, Bernard: Digital Filter Design Techniques in the Frequency Domain. Proc. IEEE, vol. 55, no. 2, Feb. 1967, pp. 149-171.
5. Ferguson, Michael J.; and Mantey, Patrick E.: Automatic Frequency Control Via Digital Filtering. IEEE Trans. Audio \& Electroacoust., vol. AU-16, no. 3, Sept. 1968, pp. 392-397.
6. Steiglitz, Kenneth: Computer-Aided Design of Recursive Digital Filters. IEEE Trans. Audio \& Electroacoust., vol. AU-18, no. 2, June 1970, pp. 123-129.
7. Jackson, Leland B.; Kaiser, James F.; and McDonald, Henry S.: An Approach to the Implementation of Digital Filters. IEEE Trans. Audio \& Electroacoust., vol. AU-16, no. 3, Sept. 1968, pp. 413-421.

Figure 1.- Signal flow graph of cascaded digital filter.

$$
\theta_{k}=1-2 \Omega_{k} \quad\left(0 \leqq \Omega_{k} \leqq 1\right)
$$

$$
M_{k}=\text { Unspecified } \quad\left(0 \leqq \Omega_{k} \leqq 1\right)
$$

Figure 2.- Two-stage linear-phase filter.

$$
\theta_{k}= \begin{cases}-\pi / 2 & \left(0.3 \leqq \Omega_{k} \leqq 0.7\right) \\ \text { Unspecified } & \text { (elsewhere) }\end{cases}
$$

$$
M_{k}=\text { Unspecified } \quad\left(0 \leqq \Omega_{k} \leqq 1\right)
$$

(a) Lag filter.

Figure 3.- Two-stage constant-phase filters.

$$
\theta_{\mathrm{k}}= \begin{cases}\pi / 2 & \left(0.3 \leqq \Omega_{\mathrm{k}} \leqq 0.7\right) \\ \text { Unspecified } & \text { (elsewhere) }\end{cases}
$$

(b) Lead filter.

Figure 3.- Concluded.

(a) Unspecified phase filter. $\lambda=0$.

Figure 4.- Two-stage limited-band constant-gain filters.

$$
M_{k}= \begin{cases}1 & \left(0.3 \leqq \Omega_{k} \leqq 0.7\right) \\ 0 & \text { (elsewhere) }\end{cases}
$$

$\theta_{k}=\left\{\begin{array}{cl}1-2 \Omega_{k} & \left(0.3 \leqq \Omega_{k} \leqq 0.7\right) \\ 0 & \text { (elsewhere) }\end{array}\right.$

(b) Linear-phase filter. $\lambda=10$.

Figure 4.- Continued.

(c) Linear-phase filter. $\lambda=1000$.

Figure 4.- Concluded.
$\theta_{k}=$ Unspecified $\quad\left(0 \leqq \Omega_{k} \leqq 1\right)$

$$
M_{k}= \begin{cases}1.0 & \left(0.0 \leqq \Omega_{k}<0.5\right) \\ 0.5 & \left(\Omega_{k}=0.5\right) \\ 0.0 & \left(0.5<\Omega_{k} \leqq 1.0\right)\end{cases}
$$

(a) Unspecified-phase filter. $\lambda=0$.

Figure 5.- Two-stage low-pass filters.

$$
\theta_{k}=\left\{\begin{array}{ll}
0 & \left(0.0 \leqq \Omega_{k} \leqq 0.5\right) \\
\text { Unspecified } & \text { (eIsewhere) }
\end{array} \quad M_{k}= \begin{cases}1.0 & \left(0.0 \leqq \Omega_{k}<0.5\right) \\
0.5 & \left(\Omega_{k}=0.5\right) \\
0.0 & \left(0.5<\Omega_{k} \leqq 1.0\right)\end{cases}\right.
$$

(b) Zero-phase filter. $\lambda=10$.

Figure 5.- Continued.

(c) Zero-phase filter. $\lambda=1000$.

Figure 5.- Concluded.

$$
\theta_{k}=\text { Unspecified } \quad\left(0 \leqq \Omega_{k} \leqq 1\right)
$$

$$
M_{k}= \begin{cases}1.0 & \left(0.0 \leqq \Omega_{\mathrm{k}}<0.5\right) \\ 0.5 & \left(\Omega_{\mathrm{k}}=0.5\right) \\ 0.0 & \left(0.5<\Omega_{\mathrm{k}} \leqq 1.0\right)\end{cases}
$$

(a) Unspecified-phase filter. $\lambda=0$.

Figure 6.- Three-stage low-pass filters.

(b) Zero-phase filter. $\lambda=10$.

Figure 6.- Continued.

$$
\theta_{k}=\left\{\begin{array}{ll}
0 & \left(0.0 \leqq \Omega_{k} \leqq 0.5\right) \\
\text { Unspecified } & \text { (el sewhere) }
\end{array} \quad M_{k}= \begin{cases}1.0 & \left(0.0 \leqq \Omega_{k}<0.5\right) \\
0.5 & \left(\Omega_{k}=0.5\right) \\
0.0 & \left(0.5<\Omega_{k} \leqq 1.0\right)\end{cases}\right.
$$

(c) Zero-phase filter. $\lambda=1000$.

Figure 6.- Concluded.

$$
\theta_{k}=\text { Unspecified } \quad\left(0 \leqq \Omega_{k} \leqq 1\right)
$$

$$
M_{k}= \begin{cases}1.0 & \left(0.0 \leqq \Omega_{k}<0.5\right) \\ 0.5 & \left(\Omega_{k}=0.5\right) \\ 0.0 & \left(0.5<\Omega_{k} \leqq 10\right)\end{cases}
$$

Figure 7.- Three-stage low-pass filter.

```
029 001 C1 U 08 720317 S00903DS
DEPT OF THE AIR FORCE
AF WEAPONS LAB (AFSC)
TECH LIBRARY/WLOL/..
ATTN: E LOU BOWMAN, CHIEF
KIRTLAND AFB NM 87117
```

"The aeronautical and.space activities of the United States shall be conducted so as to contribiute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities, and the results thereof."
\because - National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge:

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

