52 research outputs found

    Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Get PDF
    Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Clinical spectrum of CMT4C disease in patients homozygous for the p.Arg1109X mutation in SH3TC2

    No full text
    We investigated the manifestations of CMT4C disease in a genetically homogeneous group of patients homozygous for the recently identified Gypsy founder mutation p.Arg1109X in SH3TC2. We observed a surprising degree of variation in age at onset, rate of progression, extent and severity of motor and sensory involvement, scoliosis, and cranial nerve involvement, suggesting that the phenotypic spectrum of CMT4C disease is much broader than the classical diagnostic criteria. Phenotype similarity in first degree relatives and increasing heterogeneity in more distantly related subjects point to the involvement of genetic modifiers, possibly variants in the genes encoding protein partners interacting with SH3TC2. (C) 2006 Elsevier B.V. All rights reserved

    Myelin and Axon Pathology in a Long-Term Study of PMP22-Overexpressing Mice

    No full text
    We analyzed clinical and pathological disease in 2 peripheral myelin protein-22 (PMP22) overexpressing mouse models for 1.5 years. C22 mice have 7 and C3-PMP mice have 3 to 4 copies of the human PMP22 gene. C3-PMP mice showed no overt clinical signs at 3 weeks and developed mild neuromuscular impairment; C22 mice showed signs at 3 weeks that progressed to severe impairment. Adult C3-PMP mice had very similar, stable, low nerve conduction velocities similar to adults with human Charcot-Marie-Tooth disease type 1A (CMT1A); velocities were much lower in C22 mice. Myelination was delayed, and normal myelination was not reached in either model but the degree of dysmyelination in C3-PMP mice was considerably less than that in C22 mice; myelination was stable in the adult mice. Numbers of myelinated, fibers were reduced at 3 weeks in both models, suggesting that normal numbers of myelinated fibers are not reached during development in the models. In adult C3-PMP and wild-type mice, there was no detectable loss of myelinated fibers, whereas there was clear loss of myelinated fibers in C22 mice. In C3-PMP mice, there is a balance between myelination status and axonal function early in life, whereas in C22 mice, early reduction of axons is more severe and there is major loss of axons in adulthood. We conclude that C3-PMP mice may be an appropriate model for most CMT1A patients, whereas C22 mice may be more relevant to severely affected patients in the CMT1 spectru

    N-myc Downstream-Regulated Gene 1 Is Mutated in Hereditary Motor and Sensory Neuropathy–Lom

    Get PDF
    Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy–Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival
    corecore