128 research outputs found

    Seismic evidence for a rapidly rotating core in a lower-giant-branch star observed with Kepler

    Get PDF
    Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently were restricted to the Sun. In this paper, we report the detection of mixed modes - i.e. modes that behave both as g modes in the core and as p modes in the envelope - in the spectrum of the early red giant KIC7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. We use this model to perform inversions of the internal rotation profile of the star, which enables us to show that the core of the star is rotating at least five times faster than the envelope. This will shed new light on the processes of transport of angular momentum in stars. In particular, this result can be used to place constraints on the angular momentum coupling between the core and the envelope of early red giants, which could help us discriminate between the theories that have been proposed over the last decades.Comment: Accepted in ApJ, 39 pages, 16 figure

    The TAOS Project Stellar Variability II. Detection of 15 Variable Stars

    Full text link
    The Taiwanese-American Occultation Survey (TAOS) project has collected more than a billion photometric measurements since 2005 January. These sky survey data-covering timescales from a fraction of a second to a few hundred days-are a useful source to study stellar variability. A total of 167 star fields, mostly along the ecliptic plane, have been selected for photometric monitoring with the TAOS telescopes. This paper presents our initial analysis of a search for periodic variable stars from the time-series TAOS data on one particular TAOS field, No. 151 (RA = 17^{\rm h}30^{\rm m}6\fs67, Dec = 27\degr17\arcmin 30\arcsec, J2000), which had been observed over 47 epochs in 2005. A total of 81 candidate variables are identified in the 3 square degree field, with magnitudes in the range 8 < R < 16. On the basis of the periodicity and shape of the lightcurves, 29 variables, 15 of which were previously unknown, are classified as RR Lyrae, Cepheid, delta Scuti, SX Phonencis, semi-regular and eclipsing binaries.Comment: 20 pages, 6 figures, accepted in The Astronomical Journa

    A Radial Velocity Survey of the Cygnus OB2 Association

    Get PDF
    We conducted a radial velocity survey of the Cygnus OB2 Association over a 6 year (1999 - 2005) time interval to search for massive close binaries. During this time we obtained 1139 spectra on 146 OB stars to measure mean systemic radial velocities and radial velocity variations. We spectroscopically identify 73 new OB stars for the first time, the majority of which are likely to be Association members. Spectroscopic evidence is also presented for a B3Iae classification and temperature class variation (B3 - B8) on the order of 1 year for Cygnus OB2 No. 12. Calculations of the intial mass function with the current spectroscopic sample yield Gamma = -2.2 +/- 0.1. Of the 120 stars with the most reliable data, 36 are probable and 9 are possible single-lined spectroscopic binaries. We also identify 3 new and 8 candidate double-lined spectroscopic binaries. These data imply a lower limit on the massive binary fraction of 30% - 42%. The calculated velocity dispersion for Cygnus OB2 is 2.44 +/- km/s, which is typical of open clusters. No runaway OB stars were found.Comment: 56 pages, 23 figures, 5 tables, accepted for publication in the Astrophysical Journa

    The Sloan Digital Sky Survey Reverberation Mapping Project : how broad emission line widths change when luminosity changes

    Get PDF
    Funding: National Science Foundation of China (11721303, 11890693, 11991052) and the National Key R&D Program of China (2016YFA0400702, 2016YFA0400703). YS acknowledges support from an Alfred P. Sloan Research Fellowship and NSF grant AST-1715579. CJG, WNB, JRT, and DPS acknowledge support from NSF grants AST-1517113 and AST-1516784. KH acknowledges support from STFC grant ST/R000824/1. PBH acknowledges support from NSERC grant 2017-05983. YH acknowledges support from NASA grant HST-GO-15650.Quasar broad emission lines are largely powered by photoionization from the accretion continuum. Increased central luminosity will enhance line emissivity in more distant clouds, leading to increased average distance of the broad-line-emitting clouds and decreased averaged line width, known as the broad-line region (BLR) "breathing". However, different lines breathe differently, and some high-ionization lines, such as C IV, can even show "anti-breathing" where the line broadens when luminosity increases. Using multi-year photometric and spectroscopic monitoring data from the Sloan Digital Sky Survey Reverberation Mapping project, we quantify the breathing effect (Δlog W=αΔlog L) of broad Hα, HÎČ, Mg II, C IV,and C III] for statistical quasar samples over z≈0.1−2.5. We found that HÎČ displays the most consistent normal breathing expected from the virial relation (α∌−0.25), Mg II and Hα on average show no breathing (α∌0), and C IV (and similarly C III] and Si IV mostly shows anti-breathing (α>0). The anti-breathing of C IV can be well understood by the presence of a non-varying core component in addition to a reverberating broad-base component, consistent with earlier findings. The deviation from canonical breathing introduces extra scatter (aluminosity-dependent bias) in single-epoch virial BH mass estimates due to intrinsic quasar variability, which underlies the long argued caveats of C IV single-epoch masses. Using the line dispersion instead of FWHM leads to less, albeit still substantial, deviations from canonical breathing in most cases. Our results strengthen the need for reverberation mapping to provide reliable quasar BH masses, and quantify the level of variability-induced bias in single-epoch BH masses based on various lines.PostprintPeer reviewe

    The Sloan Digital Sky Survey Reverberation Mapping Project: Rapid CIV Broad Absorption Line Variability

    Full text link
    We report the discovery of rapid variations of a high-velocity CIV broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4sigma) variability in the equivalent width of the broad (~4000 km/s wide) CIV trough on rest-frame timescales as short as 1.20 days (~29 hours), the shortest broad absorption line variability timescale yet reported. The equivalent width varied by ~10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n_e > 3.9 x 10^5 cm^-3. The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios.Comment: 15 pages, 14 figures. Accepted for publication in the Astrophysical Journa

    The Sloan Digital Sky Survey Reverberation Mapping Project: Initial C IV lag results from four years of data

    Get PDF
    K.H. acknowledges support from STFC grant ST/M001296/1.We present reverberation-mapping (RM) lags and black hole mass measurements using the C iv λ1549 broad emission line from a sample of 348 quasars monitored as a part of the Sloan Digital Sky Survey RM Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days, allowing us to measure lags up to ~750 days in the observed frame (this corresponds to a rest-frame lag of ~300 days in a quasar at z = 1.5 and ~190 days at z = 3). We report significant time delays between the continuum and the C iv λ1549 emission line in 48 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of ~100 additional lags that should be recoverable by adding more years of data from the program. We use our measurements to calculate black hole masses and fit an updated C iv radius–luminosity relationship. Our results significantly increase the sample of quasars with C iv RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the C iv radius–luminosity relation. In addition, these quasars are located at some of the highest redshifts (z ≈ 1.4–2.8) of quasars with black hole masses measured with RM. This work constitutes the first large sample of C iv RM measurements in more than a dozen quasars, demonstrating the utility of multiobject RM campaigns.Publisher PDFPeer reviewe

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Granulation in Red Giants: observations by the Kepler mission and 3D convection simulations

    Full text link
    The granulation pattern that we observe on the surface of the Sun is due to hot plasma from the interior rising to the photosphere where it cools down, and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection zone. Because red giants have deeper convection zones and more extended atmospheres than the Sun, we cannot a priori assume that granulation in red giants is a scaled version of solar granulation. Until now, neither observations nor 1D analytical convection models could put constraints on granulation in red giants. However, thanks to asteroseismology, this study can now be performed. The resulting parameters yield physical information about the granulation. We analyze \sim1000 red giants that have been observed by Kepler during 13 months. We fit the power spectra with Harvey-like profiles to retrieve the characteristics of the granulation (time scale tau_gran and power P_gran). We also introduce a new time scale, tau_eff, which takes into account that different slopes are used in the Harvey functions. We search for a correlation between these parameters and the global acoustic-mode parameter (the position of maximum power, nu_max) as well as with stellar parameters (mass, radius, surface gravity (log g) and effective temperature (T_eff)). We show that tau_eff nu_max^{-0.89} and P_gran nu_max^{-1.90}, which is consistent with the theoretical predictions. We find that the granulation time scales of stars that belong to the red clump have similar values while the time scales of stars in the red-giant branch are spread in a wider range. Finally, we show that realistic 3D simulations of the surface convection in stars, spanning the (T_eff, log g)-range of our sample of red giants, match the Kepler observations well in terms of trends.Comment: 43 pages, 13 figures. Accepted for publication in Ap
    • 

    corecore