82 research outputs found

    Nonconservative higher-order hydrodynamic modulation instability

    Full text link
    The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The instability dynamics is naturally triggered, when unstable energy side-bands located around the main energy peak are excited and then follow an exponential growth law. As a consequence of four wave mixing effect, these primary side-bands generate an infinite number of additional side-bands, forming a triangular side-band cascade. After saturation, it is expected that the system experiences a return to initial conditions followed by a spectral recurrence dynamics. Much complex nonlinear wave field motion is expected, when the secondary or successive side-band pair that are created are also located in the finite instability gain range around the main carrier frequency peak. This latter process is referred to as higher-order MI. We report a numerical and experimental study that confirm observation of higher-order MI dynamics in water waves. Furthermore, we show that the presence of weak dissipation may counter-intuitively enhance wave focusing in the second recurrent cycle of wave amplification. The interdisciplinary weakly nonlinear approach in addressing the evolution of unstable nonlinear waves dynamics may find significant resonance in other nonlinear dispersive media in physics, such as optics, solids, superfluids and plasma

    Shallow water waves generated by subaerial solid landslides

    Get PDF
    Subaerial landslides are common events, which may generate very large water waves. The numerical modelling and simulation of these events are thus of primary interest for forecasting and mitigation of tsunami disasters. In this paper, we aim at describing these extreme events using a simplified shallow water model to derive relevant scaling laws. To cope with the problem, two different numerical codes are employed: one, SPHysics, is based on a Lagrangian meshless approach to accurately describe the impact stage whereas the other, Gerris, based on a two-phase finite-volume method is used to study the propagation of the wave. To validate Gerris for this very particular problem, two numerical cases of the literature are reproduced: a vertical sinking box and a 2-D wedge sliding down a slope. Then, to get insights into the problem of subaerial landslide-generated tsunamis and to further validate the codes for this case of landslides, a series of experiments is conducted in a water wave tank and successfully compared with the results of both codes. Based on a simplified approach, we derive different scaling laws in excellent agreement with the experiments and numerical simulation

    Spectral up- and downshifting of Akhmediev breathers under wind forcing

    Full text link
    We experimentally and numerically investigate the effect of wind forcing on the spectral dynamics of Akhmediev breathers, a wave-type known to model the modulation instability. We develop the wind model to the same order in steepness as the higher order modifcation of the nonlinear Schroedinger equation, also referred to as the Dysthe equation. This results in an asymmetric wind term in the higher order, in addition to the leading order wind forcing term. The derived model is in good agreement with laboratory experiments within the range of the facility's length. We show that the leading order forcing term amplifies all frequencies equally and therefore induces only a broadening of the spectrum while the asymmetric higher order term in the model enhances higher frequencies more than lower ones. Thus, the latter term induces a permanent upshift of the spectral mean. On the other hand, in contrast to the direct effect of wind forcing, wind can indirectly lead to frequency downshifts, due to dissipative effects such as wave breaking, or through amplification of the intrinsic spectral asymmetry of the Dysthe equation. Furthermore, the definitions of the up- and downshift in terms of peak- and mean frequencies, that are critical to relate our work to previous results, are highlighted and discussed.Comment: 30 pages, 11 figure

    Numerical instability of the Akhmediev breather and a finite-gap model of it

    Full text link
    In this paper we study the numerical instabilities of the NLS Akhmediev breather, the simplest space periodic, one-mode perturbation of the unstable background, limiting our considerations to the simplest case of one unstable mode. In agreement with recent theoretical findings of the authors, in the situation in which the round-off errors are negligible with respect to the perturbations due to the discrete scheme used in the numerical experiments, the split-step Fourier method (SSFM), the numerical output is well-described by a suitable genus 2 finite-gap solution of NLS. This solution can be written in terms of different elementary functions in different time regions and, ultimately, it shows an exact recurrence of rogue waves described, at each appearance, by the Akhmediev breather. We discover a remarkable empirical formula connecting the recurrence time with the number of time steps used in the SSFM and, via our recent theoretical findings, we establish that the SSFM opens up a vertical unstable gap whose length can be computed with high accuracy, and is proportional to the inverse of the square of the number of time steps used in the SSFM. This neat picture essentially changes when the round-off error is sufficiently large. Indeed experiments in standard double precision show serious instabilities in both the periods and phases of the recurrence. In contrast with it, as predicted by the theory, replacing the exact Akhmediev Cauchy datum by its first harmonic approximation, we only slightly modify the numerical output. Let us also remark, that the first rogue wave appearance is completely stable in all experiments and is in perfect agreement with the Akhmediev formula and with the theoretical prediction in terms of the Cauchy data.Comment: 27 pages, 8 figures, Formula (30) at page 11 was corrected, arXiv admin note: text overlap with arXiv:1707.0565

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    An experimental and numerical study of the resonant flow between a hull and a wall

    No full text
    International audienceThe wave-induced resonant flow in a narrow gap between a stationary hull and a vertical wall is studied experimentally and numerically. Vortex shedding from the sharp bilge edge of the hull gives rise to a quadratically damped free surface response in the gap, where the damping coefficient is approximately independent of wave steepness and frequency. Particle image velocimetry and direct numerical simulations were used to characterise the shedding dynamics and explore the influence of discretisation in the measurements and computations. Secondary separation was identified as a particular feature which occurred at the hull bilge in these gap flows. This can result in the generation of a system with multiple vortical regions and asymmetries between the inflow and outflow. The shedding dynamics was found to exhibit a high degree of invariance to the amplitude in the gap and the spanwise position of the barge. The new measurements and the evaluation of numerical models of varying fidelity can assist in informing offshore operations such as the side by side offloading from floating liquefied natural gas facilities
    corecore