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Shallow water waves generated by subaerial solid landslides
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S U M M A R Y
Subaerial landslides are common events, which may generate very large water waves. The
numerical modelling and simulation of these events are thus of primary interest for forecasting
and mitigation of tsunami disasters. In this paper, we aim at describing these extreme events
using a simplified shallow water model to derive relevant scaling laws. To cope with the
problem, two different numerical codes are employed: one, SPHysics, is based on a Lagrangian
meshless approach to accurately describe the impact stage whereas the other, Gerris, based on
a two-phase finite-volume method is used to study the propagation of the wave. To validate
Gerris for this very particular problem, two numerical cases of the literature are reproduced:
a vertical sinking box and a 2-D wedge sliding down a slope. Then, to get insights into the
problem of subaerial landslide-generated tsunamis and to further validate the codes for this
case of landslides, a series of experiments is conducted in a water wave tank and successfully
compared with the results of both codes. Based on a simplified approach, we derive different
scaling laws in excellent agreement with the experiments and numerical simulations.

Key words: Tsunamis; Submarine landslides; Impact phenomena; Volcanic hazards and
risks.

1 I N T RO D U C T I O N

Tsunami waves are generated by various geophysical events, such as
earthquakes, volcano flank collapses, asteroid impacts or submarine
and subaerial landslides. These physical mechanisms of generation
of tsunami waves are reported in the book of Levin & Nosov (2009).
The most frequent causes of tsunamis are underwater earthquakes
due to sudden changes in the seafloor (Grilli et al. 2007; Popinet
2011) and these cases are thus widely studied in the literature. For
the cases of tsunami waves generated by volcano flank collapses,
asteroid impacts or submarine and subaerial landslides one can
refer to the papers by McMurtry et al. (2004), Kharif & Pelinovsky
(2005) and Assier-Rzadkieaicz et al. (2000), respectively. Tsunamis
generated by landslides are rarer but can be locally more dangerous
because they form near the coast and sometimes may generate so-
called mega-tsunamis, which are characterized by localized extreme
run-up heights leading to a significant hazard for the population
[Lituya Bay 1958, Alaska, (Fritz et al. 2009), Spirit Lake 1980,
Washington USA (Glicken et al. 1989) and maybe Cumbre Vieja,
Canary Islands, (Ward & Day 2001; Lovholt et al. 2008; Abadie
et al. 2012)]. However, modelling the landslide motion remains
challenging because the interactions between the slide and the water
as well as the influence of the rheology are difficult to capture as
we will see below. In addition, the time evolution of the associated
waves remains intricate to forecast.

Previous studies on submarine and subaerial landslides (see Fig. 1
for the classification) tried to understand the influence of the land-

slide parameters on the generated waves. Murty (1979) analyti-
cally calculated the wave height generated by a submarine land-
slide, assuming that the potential energy of the slide was trans-
ferred in a solitary wave. Pelinovsky & Poplavsky (1996) and Watts
(1997) calculated analytically the final velocity of a submerged
solid sliding down a slope. Sammarco & Renzi (2008) developed a
two-horizontal-dimension analytical model to study the generation
and propagation of landslide-induced tsunami along a plane beach.
Didenkulova et al. (2010) studied the generation and propagation
of tsunami waves generated by submarine landslide of variable vol-
ume in a basin of variable depth. They concluded that the amplitude
of the wave varies non-monotonically with the distance. Experi-
mental investigations were carried out using solid bodies: Law &
Brebner (1968) used a solid box to generated subaerial landslides,
they concluded that the leading wave is always the most signif-
icant. Kamphuis & Bowering (1972) used a tray rolling down a
roller ramp. They observed that the main parameters to evaluate
the wave height was the Froude number for the impact velocity and
the slide volume. Based on their experiments using solid bodies,
Walder et al. (2003) demonstrated that the shape and the height
of the generated wave in near field depend on the water depth,
the volume of the slide and the duration of the submerged land-
slide motion. Enet et al. (2007) performed experiments dealing
with 3-D rigid underwater landslides. They observed that the slide
initial acceleration is an important parameter for the tsunami gener-
ation. Experiments with granular materials were conducted to study
the influence of the slide rigidity. Fritz (2002) used a pneumatic
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Figure 1. Landslide generated tsunami waves classification. This classification is based on the initial position of the landslide: subaerial, partially submerged
or submarine.

landslide generator to study subaerial landslide impacts with Froude
number Fr > 1. A particle image velocimetry (PIV) method were
used to analyse the interactions between the slide and water (Fritz
et al. 2003a,b). From all these experiments, predictive equations
on wave amplitude, wave period, wavelength and propagation ve-
locity were provided using multiple regressions with very good
correlation coefficients. An extension to 3-D cases was performed
by Mohammed & Fritz (2012). Ataie-Ashtiani & Nik-Khah (2008)
performed laboratory experiments on impulse waves generated by
rigid and deformable slide masses. They showed that the maximum
wave crest amplitude is strongly affected by the landslide impact
velocity, thickness, deformation and weakly affected by the shape.
Several numerical methods were used to understand and analyse
these observations. Heinrich et al. (2001) used non-linear shallow
water equations to model fluid and slide motions. However, land-
slide tsunami waves may be more dispersive than tectonic ones and
strong vertical accelerations may occur when the slide impacts water
so the usual assumptions for equations (no vertical acceleration and
non-dispersive waves) are not valid. Using potential flow numeri-
cal methods, like the boundary elements method (BEM) used by
Grilli et al. (2002), correctly simulate tsunami waves generated by
submarine landslide. However, the strong vorticity and the possible
fragmentation of the free surface produced by a subaerial landslide
raise numerical issues with this method. Monaghan & Kos (2000)
used the smoothed particle hydrodynamics (SPH) to simulate the
interactions between sliding masses and water for subaerial cases.
These single-phase flow simulations reproduce successfully some
challenging features, like the reverse plunging breaking and a di-
mensional analysis were performed on the amplitude of the wave
assuming like Murty (1979) that the potential energy of the weighted
box is transferred in the generated solitary wave.

Liu et al. (2005) used a finite-volume discretization and a volume-
of-fluids (VOF) method to numerically reproduce their experiments
of run-up and rundown generated by 3-D sliding masses. They
showed that the run-up is significantly larger for subaerial landslides
and that the run-up and rundown are controlled by the size, the
initial submergence and the motion of the slide. Heinrich (1992)
used a finite difference technique to solve incompressible Navier–
Stokes equations for the simulation of submarine and subaerial
landslides. More recently, Fernandez-Nieto et al. (2008) used a
Savage–Hutter type model to describe both deformed landslide and
associated waves. Abadie et al. (2010) considered a multiple-fluid
Navier-Stokes model using a finite volume discretization and a VOF
method to track the interface and describe the interactions between
slide/air/water. A more detailed presentation of numerical methods
used to simulate tsunami waves can be found in Abadie et al. (2010).

In this work, we perform 2-D experiments in a 18-m-long,
0.65-m-wide and 1.5-m-high wave tank with a solid body sliding

down a slope with constant water depths. To study the influence of
the main parameters of a solid landslide generating waves, the ini-
tial mass and position of the solid are modified to create subaerial
landslides. We numerically reproduce the experiments using two
codes: Gerris, a tree-based adaptive solver using a finite-volume dis-
cretization and a VOF method to track the interface (Popinet 2003,
2009) and SPHysics (Gómez-Gesteira et al. 2012a,b), a lagrangian
meshless method. Based on these results, additional numerical ex-
periments were performed to systematically study the influence of
solid velocity, slope angle, initial water depth and shape of the solid
on the generated water waves in the near and far field.

The main objective of this work is twofold: (i) validation of both
codes on the time evolution of the free-surface elevation and (ii)
elaboration of a simplified model for prediction of wave genera-
tion and propagation as a function of the initial configuration of
subaerial solid landslides. The experimental and numerical studies
of subaerial landslide generated waves are presented in Section 2.
Scaling laws on the maximum amplitude arrival time and on the
maximum amplitude evolution are derived in Sections 3 and 4, re-
spectively, and then validated by comparison with our experiments.

2 E X P E R I M E N TA L VA L I DAT I O N O N
WAV E G E N E R AT E D B Y S U B A E R I A L
S O L I D L A N D S L I D E

Several experiments involving subaerial solid landslides are per-
formed varying some parameters like the water depth, the mass and
the initial position of the solid. Based on these experiments, a cross
validation of both numerical methods (SPHysics and Gerris) can be
performed in near and far fields, respectively.

2.1 Experimental set-up and data acquisition

Experiments are conducted at École Centrale de Marseille in a
18-m-long, 0.65-m-wide and 1.5-m-high wave tank. A plane slope
is installed on one side of the flume and an absorbing beach on
the other side. The slope is made of a polyvinyl plate of 1.5 cm
thickness, 2.2 m length and 0.65 m width, fixed on the left boundary
with 35◦ inclination. The water depth is fixed to 0.43 and 0.38 m,
respectively (see Fig. 2). The wedge used to generate the impulse
wave is represented by a box with a front angle θ = 45◦. To avoid
water to pass over the solid, an other 1-m-long, 0.65-m-wide and
1.0-cm-thick polyvinyl plate is fixed on the front of the box. An
aluminum rod is screwed to the top of the plate and the base of the
solid to avoid elastic flexion. The solid slides down the slope by
gravity rolling on four wheels. The gap between the solid and the
slope is about 1 cm (radius of the wheels). To reduce this clearance,
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Figure 2. Schematic view of the experimental set up for subaerial landslide generated waves. Wave gauges are located at 1.80 m, 2.805 m, 4.98 m, 5.16 m,
5.34 m, 5.70 m and 10.08 m from the intersection of the slope with the bottom of the flume (not to scale).

we place the polyvinyl plate approximately 1 mm above the slope.
This small gap is supposed to have very few effects on the generated
waves and is thus neglected in our numerical simulations. The sides
of the tank are made of transparent glass, which allows the use of
two cameras to follow the time evolution of the free surface. The
displacement of the solid is filmed by one of the cameras at 100 fps
(back view on Fig. 2), the other one is installed perpendicular to the
side of the tank at the same level as the undisturbed free surface, to
follow the impact with water at 1000 fps (front view on Fig. 2 ). The
recorded pictures are only used to compare qualitatively the overall
behaviour of the free surface with the numerical simulations. The
propagation and the amplitude of the generated waves are measured
using seven electrical contact-type gauges installed along the wave
tank at 1.80, 2.805, 4.98, 5.16, 5.34, 5.70 and 10.08 m, respectively,
from the intersection of the slope with the bottom of the flume.
They are all located at the same distance from the transparent sides
assuming the propagation to be unidimensional along the flume
width [this has been confirmed by Heinrich (1992) in a similar wave
tank configuration]. Several experiments are conducted changing
the water depth, mass and initial position of the solid. A high position
of the solid corresponds to a subaerial landslide whereas a low
position of the solid corresponds to a partially submerged landslide.
In both cases, the front of the solid impacts the undisturbed free
surface non-perpendicularly (with a 10◦ angle). In the remainder of
the paper, these two configurations are called high and low positions.

2.2 Numerical methods for our 2-D simulations

The code Gerris is a tree-based adaptive solver using a finite-volume
discretization and a VOF method to track the interface (Popinet
2003, 2009, see also the appendix for further details). The com-
putational domain used is defined by a 12 m × 12 m square. The
mesh refinement is controlled by the interface position and the vor-
ticity field. The code automatically adapts the refinement on the
free surface and the generated vorticity. The finest level 11, leads
to a smallest cell edge of about 6 mm (12/211) on the free surface
and for the generated vorticity. We use the values of density and
viscosity for air and water at ambient temperature of 20 ◦C and am-
bient pressure of 1013 hPa (ρw = 1000 kg m−3, ρa = 1.2 kg m−3,
μw = 1.0 × 10−6 kg m−1 s−1 and μa = 1.8 · 10−5 kg m−1 s−1). To
ensure the stability of the simulation for a large ratio of density,
ρw/ρa ≈ 800 in this case, we tune the solver by decreasing the
tolerance corresponding to the maximum error allowed in local vol-
ume/mass conservation and by increasing the maximum number of
iterations. Instead of numerically generating a slope and imposing
a vertical and horizontal velocity to the solid, we choose to rotate
anticlockwise all the domain and the gravity by an angle equal to
35◦ (see Fig. 3a). The curvilinear velocity of the solid is imposed
(Dirichlet boundary condition on the velocity) and the slope is a

Figure 3. (a) Representation of the domain configuration and initial adaptive
mesh refinement on the free surface. The discretization is organized hierar-
chically as a quadtree with a root cell (dark blue) and leaf cell (dark red)
(Popinet 2003). (b) Free-surface elevation given by SPHYSICS2 for three
different models of viscosity: the artificial viscosity (Monaghan 1992), the
laminar stress approach (Lo & Shao 2002) and the use of a subparticle
scale (SPS) approach (Dalrymple & Rogers 2006). The excellent agreement
shows that the results of the flow considered in this work do not depend on
the choice of the viscosity model.

boundary of the domain. This configuration is much easier to com-
pute especially for the displacement of the solid. The boundary
conditions are a free outflow at the top of the domain, which corre-
spond to Neumann conditions on the velocity (the normal derivative
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of the velocity is equal to zero on the boundary) and a Dirichlet con-
dition on the pressure (fixed to zero). A no-slip condition is imposed
at the bottom of the tank on the velocity and a symmetry condition is
imposed on both sides of the domain, which is equivalent to a free-
slip impermeable boundary. For the simulations considered in this
work, the initial condition for the water and the air is systematically
zero for the velocity.

The SPH code used in this study is the code SPHysics (see Cébron
& Sigrist 2008; Gómez-Gesteira et al. 2010, 2012a,b, for details and
validations). This code simulates single-phase flows with a free-
surface and moving solids in the numerical domain. This means
that the influence of the air flow is neglected in these simulations,
which can lead to slightly enhanced wave heights. The parameters
used are rather usual for these kind of computations: particles are
moved using the XSPH variant (Monaghan 1989), the variable time
step solver is a predictor–corrector solver and the smoothing kernel
used is a cubic spline. The simulations presented in this work use a
sound velocity of 40

√
gH , and a number of particles between 105

and 3 × 105, depending on the considered flow, which leads to a CPU
time between 2 days and several weeks on a standard workstation.
A well-known problem in the SPH numerical method is the way
the viscosity is taken into account in the fluid and along solid
boundaries. For the boundary conditions, the so-called repulsive
boundary conditions are used (Monaghan & Kos 2000; Rogers &
Dalrymple 2008). Concerning the viscosity in the bulk of the fluid,
three different methods exist, which are compared in Fig. 3(b). The
artificial viscosity suggested by Monaghan (1992) is often used for
its simplicity (squares, with an artificial viscosity coefficient α =
0.1). Another way is to estimate the laminar stress term as in Lo &
Shao (2002), which corresponds to the diamonds. In addition to this
laminar viscosity, a subparticle scale (SPS) approach can be used
(cross in Fig. 3b) for turbulent flows (Dalrymple & Rogers 2006).

It is clear that these methods give the same results for the cases
considered in this work. Hence, we choose to use the purely laminar
stress approach (Lo & Shao 2002).

2.3 Experimental and numerical results

Comparisons between the experimental free-surface elevation and
numerical wave profiles for both configurations are shown in Fig. 4.
Wave breaking occurs for the higher position of the solid. This
phenomenon is well described by SPH simulation. We can clearly
observe the breaking of the wave which presents a flat backward
face. Note that a lot of particles are needed to capture the breaking.
Consequently, we define a reduced numerical wave tank to have
a reasonable computational time. The free-surface elevation com-
puted with Gerris has a smaller steepness and amplitude than in the
experiment. We cannot clearly see the wave breaking, but oscilla-
tions at the crest of the wave (this phenomenon is also observed for
higher resolutions). Within the framework of the low position of the
solid, a good agreement between experimental data and numerical
results is obtained for the free-surface elevation.

The velocity of the solid is directly imposed in the numerical
simulations from the experimental records of its displacement along
the slope. We measure the successive positions during the motion
at a fixed time step (frame rate of the camera). These positions are
interpolated by a polynomial representing the vertical displacement
of the solid as a function of time (see Table 1).

Fig. 5 displays the experimental and numerical evolution of the
free-surface elevation recorded at the first probe for both config-
urations [panel (a) low position, panel(b) high position]. For the
lower configuration, the amplitude of the first crest is underesti-
mated by the two codes. Nevertheless, the SPH method seems to

Figure 4. Comparison between the experiment and simulated free surface for both initial configurations: panel (a) low position, panel (d) high position when
the solid reaches the bottom of the tank. Panels (b) and (c) correspond to Gerris and SPH results for low position, panels (e) and (f) for high position. SPH
method seems to be more accurate than Gerris for the simulation of the impact. Oscillations on the free surface in panel (e) probably correspond to the wave
breaking experimentally observed.
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Table 1. Coefficients of the polynomial representing the vertical displace-
ment of the solid as a function of time for both initial positions given by
P(t) = ∑n=7

n=2 antn .

Coefficients a2 a3 a4 a5 a6 a7

Low position 0.8515 2.241 −5.315 2.45 0 0

High position −0.0976 19.3853 −73.0275 140.694 −140.3217 54.5643

Figure 5. First probe located at 1.80 m from the intersection of the slope with
the bottom of the tank. Comparison between experimental and computed
waves (a) low position and (b) high position. Experiment (dashed line),
Gerris (solid line) and SPH (� ). Both numerical methods are in satisfactory
agreement with the experiment.

be more accurate with only 5 per cent error, which is the relative
deviation from experimental data. With Gerris, the most important
discrepancy is the significantly lower crest in the simulation with
a larger wavelength. The underestimated amplitude corresponds to
a 20 per cent error. Following the first crest, the amplitude of the
trough is correctly computed with Gerris, whereas the SPH method
overestimates it with a 10 per cent error. Later in the simulation, the
amplitude of the crest is correctly calculated with Gerris and SPH
but the troughs are still overstimated and a weak time-lag occurs.
Initial wave acceleration seems to be lower in the numerical simu-
lations, the trough and the second crest reach the wave gauge later
than in the experiment. For the highest configuration (Fig. 5b), the
amplitude of the first crest is well computed by SPH and Gerris.
The most important discrepancy occurs for the following crest and
trough (see Fig. 5b).

Fig. 6 shows the time evolution of the elevation at probes 2 and
4 (2.805 and 5.16 m), respectively from the intersection of the
slope with the bottom). The simulation is stopped when the first
waves reach the boundary of the domain to avoid any reflection

effect in the results. Due to the computational cost, the SPH domain
length is smaller than the Gerris one, especially for the high position
where a lot of particles are used (for the highest resolution for
instance, the SPH domain length is 5 m). This naturally leads to a
shorter time evolution in the simulation. For the low position of the
solid the amplitude is still slightly underestimated at wave gauge 2
with Gerris. SPH simulation is in a satisfactory agreement with the
experiment. For both numerical methods, the amplitude of the first
crest and following trough are correctly simulated. For the higher
position of the solid, the wave amplitude is underestimated too with
an error of about 10 per cent. The trough is better computed at
this probe than the first one but there is no clear dispersive tail. We
observe the same overall behaviour at probe 4 where most of the
initial energy is in the dispersive tail. In both initial configurations,
the numerical leading wave propagates a little faster than in the
experiment (reaching the gauges 0.1 s before).

Both models correctly reproduce the generation and the propaga-
tion of waves generated by subaerial landslides. The SPH method is
more accurate to describe the generation of tsunami waves. Never-
theless, it requires a larger computational time than Gerris. However,
in spite of the lower accuracy in the initial generation of the wave,
Gerris correctly reproduces the overall behaviour during the prop-
agation, using a shorter computational time. Two other validation
cases for Gerris dealing with aerial impact and submarine landslide
are shown in the appendices.

3 M A X I M U M WAV E A R R I VA L T I M E

During the experiments we obtain the arrival time of the leading
wave using the different wave gauges. In this section, we develop an
analysis within the framework of the shallow water approximation
(kH � 1), and linear waves (A/H � 1). We consider a subaerial solid
landslide where the front basis of the mobile is initially touching
the undisturbed free surface. The abscissa origin is located at the
intersection of the slope with the horizontal bottom. The abscissa
X is measured along the bottom. The solid friction and the mass
of the solid are included in the experimentally measured velocity.
Fig. 7 illustrates the different parameters used in our study. The
validation of the theoretical analysis is studied varying the relevant
parameters.

3.1 Scaling laws

For tsunami wave forecast, it is important to predict the arrival time
at a fixed point. In the case of earthquake tsunamis, the seafloor de-
formation occurs instantaneously and does not influence the propa-
gation of waves once generated. On the contrary, for tsunami waves
generated by subaerial or submarine landslides, the duration of the
collapse in water is a non-negligible parameter. Defining the water
depth H, the solid velocity V and the slope angle β, the time of
solid sliding tsolid is tsolid = H/(V sin β), which is a timescale of the
problem. Within the framework of linear non-dispersive waves, the
propagation time of the leading wave to reach the probe located
at Xp is ttravel = X p/

√
gH . Consequently, the arrival time of the

leading wave at location Xp for a subaerial landslide is given by

tmax = H

V sin β
+ X p√

gH
. (1)

The arrival time of the maximum amplitude wave generated by sub-
aerial landslides can be considered as the moving time of the slide
down along the slope plus the traveltime of a linear non-dispersive
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Figure 6. Comparison between experimental and computed wave gauges 2(a,b) and 4(c,d) for both configuration. Experiment (dashed line), Gerris (solid line)
and SPH (�). The evolution of the amplitude during the propagation is well represented with Gerris.

Figure 7. Schematic view of the numerical wave tank at time t. The area
of the submerged part of the solid is noted A(t), d(t) is its thickness, β the
slope angle, α the angle between the front of the solid and the vertical, H
the water depth and V the velocity of the slide.

long wave in water depth H. The error made on the phase velocity
by assuming the wave to be non-dispersive is O(k2 H 2/6) where
k is the wavenumber. In all our experiments and numerical sim-
ulations, the dispersive parameter satisfies 0.2 < kH < 0.65 (see
Fig. 8a), which leads to an error on the phase velocity of the gener-
ated wave varying between 1 and 7 per cent. The generated waves
are thus weakly dispersive and the shallow water approximation can
be used to estimate the time needed for them to reach the probe
located at Xp. In the limit of shallow water waves: tsolid � ttravel and
tmax ≈ ttravel; whereas in the limit of large depths, ttravel � tsolid and

tmax ≈ tsolid. Thus, we introduce two critical depths Hmin and Hmax.
For H < Hmin, tmax is given by eq. (1) whereas for H > Hmax, tmax

≈ tsolid. In this case, the time of generation is large and the wave is
not completely formed when the surface deformation arrives at the
probe located at Xp. For Hmin < H < Hmax, we approximate tmax by
a cubic polynomial: tmax = ∑n=3

n=0 an H n . The depth Hmin is chosen
so that ∂Htmax(Hmin) = 0. The result is

Hmin =
[

(X p V sin β)2

4 g

]1/3

. (2)

The determination of Hmax is more subtle and is defined when
tmax(Hmax) = ξ tsolid(Hmax), where ξ is a general constant obtained
using a unique numerical time-series. From eq. (1) we obtain

Hmax =
[

(X p V sin β)2

(ξ − 1)2 g

]1/3

. (3)

The two points [Hmin, tmax(Hmin)] and [Hmax, tmax(Hmax)] with their
respective tangents of slope 0 and 1/(V sin β) allow the computation
of the coefficients of the cubic polynomial an(ξ ), n = 0, 1, 2, 3. As
previously emphasized, the constant ξ is chosen to give the best
agreement with the numerical results (ξ = 1.2 for all the probes).
The theoretical curve of the function tmax(H) and numerical data at a
fixed probe are shown in Fig. 8(b). Note that Hmin and Hmax depend
on the position Xp of the probes.
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Figure 8. (a) Values of the dispersive and non-linear parameters for sev-
eral simulations. The Froude number is V/

√
gH . (b) Maximum amplitude

arrival time at a fixed probe as a function of depth. Solid black and red
lines correspond to the asymptotic behaviours for H < Hmin and H > Hmax,
respectively. Dashed blue line corresponds to the approximate solution that
matches the asymptotic solutions. Circles correspond to numerical results.

3.2 Comparison between theoretical and numerical results

The numerical simulations are run with the code Gerris, the com-
puted cases correspond to parameters close to the experiments. The
theoretical and numerical evolutions of the maximum amplitude ar-
rival time tmax as a function of the different parameters are compared
using four probes located respectively at 1, 2, 3 and 6 m from the
intersection of the slope with the bottom of the numerical wave tank.
tmax is plotted as function of the water depth H in Fig. 9(a) where
all the other parameters are set to a constant value. As shown in the
previous subsection, tmax admits a minimum value for H = Hmin.
For all the probes, the asymptotic solutions corresponding to H <

Hmin and H > Hmax (solid lines in Fig. 9a) and the matching cubic
polynomial (dashed lines in Fig. 9a) agree well with the numerical
results. In Fig. 9(b), tmax is plotted as a function of the velocity V
of the solid, where all the other parameters are set to a constant
value. The theoretical expression (1) of tmax derived in the previous
subsection from a dimensional analysis is in very good agreement
with the numerical results. We have plotted the value of tmax at the
first probe numerically computed with the SPH method for differ-
ent slide velocities (V = 0.6, 1, 2, and 2.5 m). This latter result
confirms that our scaling is still consistent for high-speed impact,
more accurately simulated with the SPH method. In Figs 10(a) and
(b) the behaviour of tmax is shown as a function of the slope angle

Figure 9. (a) Comparison between numerical and theoretical arrival time of
the maximum wave amplitude as a function of the water depth for β = 35◦,
α = 10◦, V = 1 m s−1. The solid lines and dashed lines correspond to the
asymptotic solutions and cubic polynomial, respectively. (b) Comparison
between numerical and theoretical arrival time of the maximum wave am-
plitude as a function of the velocity of the slide for β = 35◦, α = 10◦, H =
0.43 m [SPH simulations (�)]. Solid blue, dash-doted red, dashed green and
black lines represent the theoretical arrival time at probes 1–4, respectively.
Numerical results for probes at: (©) 1 m, (�) 2 m, (+) 3 m and (�) 6 m.

β, for two values of the Froude number Fr = V/
√

gH , where all
the other parameters are set to a constant value. The agreement
between the theoretical results given by eq. (1) and the numerical
results is fairly good. For Fr = 0.2, we observe a good agreement
when the slope is steep or gentle, otherwise some relatively weak
discrepancies occur when 20◦ < β < 45◦. For Fr = 0.64 and β > 30,
the theory is in better agreement with the numerical simulations.
For steep slopes, tsolid is short enough to allow a full generation
and propagation of the leading wave to the location of the probes.
On the contrary, we observed disagreement between theoretical and
numerical results for gentle slopes. Note that the ratio of ttravel/tsolid

is related to the Froude number defined previously trough the fol-
lowing relation: ttravel/tsolid = (Xp Fr sin β)/H. For a given Froude
number, this ratio decreases as the slope angle decreases (with 0 <

β < 90◦). The Froude number can also be understood as the ratio
between the timescale of wave propagation and the timescale of
wave generation.
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Figure 10. Comparison between numerical and theoretical arrival time of
the maximum wave amplitude as a function of the slope angle for (a) α =
10◦, V = 0.5 m s−1, H = 0.6 m and (b) α = 10◦, V = 1.1 m s−1, H =
0.3 m. Solid blue, dash-doted red, dashed green and black lines represent the
theoretical arrival time at probes 1–4, respectively; The thin magenta solid
line corresponds to the case where the gauge is in the generation/transition
zone. Numerical results for probes at: (©) 1 m, (�) 2 m, (+) 3 m and (�)
6 m.

3.3 Comparison between theoretical and experimental
results

To compare the theoretical and experimental arrival time we take
into account the mean velocity of the slide along its displacement.
This could lead to a little shift in the traveltime of the slide, but it
remains less than 0.05 s for all our experiments. This was assumed
to have negligeable effects on the laboratory solid landslide. For
the low position of the slide one should keep in mind that the
traveltime is not H/(V sin β) but (H − Hs)/(V sin β) with Hs the
initial submergence of the solid.

In Fig. 11 is shown a comparison between the experimental and
theoretical arrival time of the maximum wave amplitude, tmax, as a
function of the position Xp of the probes. Figs 11(a) and (b) corre-
spond to the low and high positions of the solid, respectively. The
theoretical expression (1) is confronted to a series of experiments
for different depths and solid masses. Fig. 11(a) shows the effects of
both depth and mass on tmax whereas only the influence of the water
depth is considered in Fig. 11(b). The leading wave reaches the

Figure 11. Comparison between experimental and theoretical arrival time
of the maximum wave amplitude as a function of the position of probes.
(a) Low solid position: (i) for H = 0.43 m, M = 70 kg, α = 10◦, β = 35◦,
dashed line (theory) and blue circles (experiments); (ii) for H = 0.43 m,
M = 85.5 kg, α = 10◦, β = 35◦, dash-dotted line (theory) and red squares
(experiments); (iii) for H = 0.38 m, M = 85.5 kg, α = 10◦, β = 35◦, solid
line (theory) and diamonds (experiments). (b) High solid position: (i) for
H = 0.43 m, M = 85.5 kg, α = 10◦, β = 35◦, dashed line (theory) and
circles (experiments); (ii) for H = 0.38 m, M = 85.5 kg, α = 10◦, β = 35◦,
dash-dotted line (theory) and squares (experiments).

probes sooner with a heavier solid for a given water depth. Indeed
the traveltime of the solid is smaller in this case. It is more difficult
to conclude on the effects of the water depth. During our exper-
iments the water depth does not change enough to clearly see its
influence, especially on the traveltime of the solid. In all the cases,
the experimental and theoretical results are in good agreement.

4 T I M E E V O LU T I O N O F T H E
M A X I M U M WAV E A M P L I T U D E

From the previous section, we are able to predict the arrival time
of the leading wave generated by a subaerial solid landslide with
a good accuracy. Another property of interest for a tsunami wave,
and maybe the most important, is its amplitude. In this section, we
derive scaling laws based on a solution of the linearized Korteweg-
de-Vries (KdV) equation to predict the evolution of the maximum
amplitude as a function of time. The validation and limitations of
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these scaling laws are then studied by varying the main parameters
of the experiments (V, H, α, β).

4.1 Scaling laws

In the weakly dispersive linear shallow water approximation, the
spatio-temporal evolution of the free surface η of an initial pertur-
bation is governed by the linearized KdV equation

∂η

∂t
+ c

∂η

∂s
+ c h2

6

∂3η

∂s3
= 0, (4)

where h is the local depth and c = √
gh. For an initial condition η(s,

0) = Qδ(s), the solution of eq. (4) is (see Pelinovsky et al. 2000)

η(s, t) = Q

(
2

c t h2

)1/3

Ai

[(
2

c t h2

)1/3

(s − c t)

]
, (5)

where Q is a constant corresponding to the cross-section of the
water volume moved by the solid, δ the Dirac delta function and
Ai the Airy function. This solution corresponds to a leading long
wave followed by a modulated wave train. We assume that the solid
generates such a perturbation and focus on the leading wave. We
use this exact solution derived within the framework of constant
depth only to develop a dimensional analysis and we set

ηmax = Kprop Q H−5/6 g−1/6 t−1/3, (6)

where Kprop is a dimensionless constant which does not vary with
the parameters of the experiments and is going to be determined
numerically.

If the solid velocity is larger than the generated wave velocity, the
behaviour may be different. Indeed, we may expect the occurrence
of two different regimes depending on whether the solid velocity V is
larger or smaller than the wave velocity. This leads to define a critical
value for the solid velocity. Herein, we use a dimensional analysis
based on a simplified theory to determine this critical velocity and
the amplitude of the leading front generated by the solid. As soon as
the leading front has been generated, it propagates over the slope. Let
s be the distance of horizontal propagation of the front, satisfying s =
h/tan β where h is the local depth, with h(t ≥ tsolid) = H. Hence, 0 ≤
s(t) ≤ H/tan β. The leading wave velocity along the slope is assumed
to be equal to

√
gh = √

g tan β s. From c(s) = dt s = √
g tan β s the

leading wave velocity as a function of time is c(t) = (g t tan β)/2.
The temporal mean velocity of the front during its propagation over
the slope is

c̄ = 1

tb

∫ tb

0
c dt =

√
gH

2
, (7)

where tb satisfies s(tb) = H/tan β. Using c̄ as the critical solid
velocity, the critical corresponding Froude number is Fr = 1/2.
In the numerical simulations presented in Section 3, we found two
different regimes depending on whether the Froude number is larger
or smaller than the value 1/2. For large solid velocity V > c̄ or
Fr > 1/2, we assume that Q = A0, where A0 = A(t = tsolid) is the
submerged part of the solid as defined in Fig. 7 at time t = tsolid. For
slower solid velocity (Fr < 1/2), we consider the thickness of the
submerged part of the solid, d0 = [H cos (α + β)]/cos α, as defined
in Fig. 7 at time t = tsolid. The thickness parameter has been used in
several studies on landslide tsunami forescast (Fritz 2002; Walder
et al. 2003; Fritz et al. 2004). Thus, the coefficient Q is defined as
follows:

Q ∼
{

A0 if Fr > 1
2 ,

a H cos(α+β)
cos α

if Fr < 1
2 ,

(8)

where a a is a characteristic lengthscale of the problem, related
to the generated wave. To define a, we assume that all the energy
of the solid landslide is transferred in the linear generated wave,
which leads to : ρga2 = ρV2L, where L is a typical length of the
solid defined as the square root of its submerged part area A0 (see
Fig. 7) and a the amplitude of the linear wave. Based on this, we
derive a = V A1/4

0 g−1/2.
Combining eqs (6) and (8) we get for the elevation of the leading

wave

ηmax =
{

Kprop1 A0 H−5/6 g−1/6 t−1/3,

Kprop2 ζ A1/4
0 V H 1/6 g−2/3 t−1/3.

(9)

The first equation with Kprop1 is for Fr > 1/2, the second one with
Kprop2 is for Fr < 1/2 with ζ = [cos(α + β)/ cos α]. The submerged
area of the solid A0 is

A0 = H 2 cos(α + β)

2 sin β cos α
. (10)

These previous expressions provide the temporal evolution of the
maximum amplitude of the generated leading wave in the propaga-
tion regime which can be considered as the regime in the far field.
In the generation stage, the free-surface elevation increases during
the displacement of the solid and reaches its maximum at t = tsolid.
Contrary to the propagation regime, we do not have an analytical
expression of the wave profile during the phase of the wave gener-
ation by the solid landslide. Hence, the derivation of the analytical
expression of the amplitude of the generated wave is based on a di-
mensional analysis relied on numerical results. From the numerical
simulations we observed that the amplitude increases as

√
t during

the solid motion (see Fig. 12). To hold Fr = 1/2 as critical Froude
number, the maximum elevation is sought in the form

ηmax = Kgen Qγ V λ t1/2, (11)

where Kgen is a dimensionless constant. A dimensional analysis
gives γ = 1/4 and λ = 1/2. Hence, in the generation regime

ηmax =
{

Kgen1 A1/4
0 V 1/2 t1/2,

Kgen2 ζ 1/4 A1/16
0 V 3/4 H 1/4g−1/8 t1/2.

(12)

The first equation with Kgen1 is for Fr > 1/2, the second one with
Kgen2 is for Fr < 1/2.

Figure 12. Temporal evolution of the leading wave amplitude for two initial
sets of parameters (logarithmic scales). V = 0.5 m s−1, H = 0.6 m, β =
55◦ and α = 10◦ (©). V = 1 m s−1, H = 0.3 m, β = 35◦ and α = 10◦ (�).
Slope 1/2 (dashed lines) and slope −1/3 (solid lines).
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4.2 Validation and limitation of the derived scaling laws

Under different assumptions, scaling laws depending on the Froude
number, and based on a dimensional analysis have been derived.
Two different regimes are defined as a function of the sliding du-
ration of the solid and the distance from the shore. A generation
regime corresponding to the evolution of the amplitude in the near-
field and a propagation regime, where the generated waves behave
linearly in shallow water approximation. Herein, the validity of
the approximate solution is checked for Fr < 1/2 and Fr > 1/2,
varying the main parameters of the problem V, H, β and α (see
Table 2).

Several numerical simulations have been run by varying only the
slide velocity V from 0.3 to 2.5 m s−1. The other parameters are
H = 0.43 m, β = 35◦ and α = 10◦. The numerical wave gauges are
located at the same position as previously. For all the simulations,
they are located in the propagation zone (the maximum amplitude
at the probes occurring after the end of the solid displacement). The
maximum amplitude as a function of the solid velocity is shown
in Fig. 13. The black vertical line corresponds to Fr = 1/2 and
separates the domains corresponding to Fr < 1/2 and Fr > 1/2, re-
spectively. From both sides of the critical line the theoretical results
are in good agreement with those of the numerical simulations. The
main discrepancy occurs in the vicinity of Fr = 1/2 because we
did not use a matching of the solutions. The elevation at the first
probe is computed using the SPH method that provides amplitudes
larger than those of Gerris (which is consistent with previous ob-
servations). However, the overall behaviour from both methods is

Table 2. Notations and parameters values used for
numerical simulations.

Parameter Notation Range of parameters

Solid velocity V 0.3–2.5 m s−1

Water depth H 0.2–2 m

Slope angle β 5–75◦
Solid angle α 0–52◦

Figure 13. Numerical and theoretical maximum amplitude as a function
of the slide velocity (logarithmic scales). Markers correspond to numerical
wave probes: First probe (©) for Gerris and (�) for SPH, second probe
(�), third probe (+) and fourth probe (�). Curves correspond to theoretical
results: First probe (solid line), second probe (dot-dashed line), third probe
(thin dashed line) and fourth probe (thick dashed line). Theory is in a
satisfactory agreement with the simulations even for a Froude number close
to 1/2.

the same. The values of Kprop1 and Kprop2 are defined so as to match
Gerris results. These coefficients remain almost unchanged when
one considers SPH simulations. The values of the coefficients are
Kprop1 = 0.78 and Kprop2 = 1.8.

The influence of the velocity having been studied, we proceed
in a similar way to quantify the influence of the water depth. Sev-
eral numerical simulations are now run by varying only the water
depth from H = 0.2 m to H = 2 m. All the other parameters are
fixed: V = 1 m s−1, β = 35◦ and α = 10◦. As previously, the
critical vertical black line corresponds to Fr = 1/2. The maxi-
mum amplitude in the propagation zone as a function of H can
be seen in the Fig. 14(a). Theoretical and numerical results are
in good agreement (as also shown by the first wave gauge re-
sults of two SPH complementary simulations). Here again, SPH
results are slightly higher than those of Gerris, but the trend re-
mains consistent with the theory. In the generation stage (Fig. 14b)

Figure 14. Numerical and theoretical maximum amplitude as a function
of depth: (a) in propagation regime and (b) in generation regime. Markers
correspond to numerical wave probes and curves to theoretical results (log-
arithmic scales). (a) First probe (©) for Gerris and (�) for SPH, second
probe (�), third probe (+) and fourth probe (�). First probe (solid line),
second probe (dot-dashed line), third probe (thin dashed line) and fourth
probe (thick dashed line). (b) First probe (© for Gerris and � for SPH),
second probe (�). Theory is in good agreement with the simulations.
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Figure 15. Numerical and theoretical maximum amplitude as a function of the slope angle [panels (a) and (c)] and angle α [panels (b) and (d)]. Markers
correspond to numerical wave probes and curves to theoretical results. First probe (©), second probe (�), third probe (+) and fourth probe (�). First probe
(solid line), second probe (dot-dashed line), third probe (thin dashed line) and fourth probe (thick dashed line).

when Fr > 1/2, the theory is in excellent agreement with the
numerical simulations (Kgen1 = 0.30). For Fr < 1/2, the the-
ory is also in good agreement with the numerical results using
Kgen2 = 0.22.

In addition to the slide velocity and the water depth, we also
check the validity of the approximate solution with the slide ge-
ometry. Numerical simulations are performed by varying the slope
angle and the angle between the front of the solid and the verti-
cal for two values of the Froude number larger and smaller than
1/2, respectively. In Fig. 15(a) is plotted the maximum amplitude
recorded at different numerical wave probes for several values of
β and Fr = 0.2 (V = 0.5 m s−1, H = 0.6 m and α = 10◦). The
corresponding theoretical curves given by eq. (9) are very close to
the numerical points. Nevertheless, a discrepancy can be observed
between numerical and theoretical results for small β. Note that our
theory becomes invalid for β close to zero. Fig. 15(b) illustrates
the influence of α for V = 0.5 m s−1, H = 0.6 m and β = 35◦.
Here again the theory is consistent with the numerical simulations.
The same comparisons are presented in Figs 15(c) and (d) for Fr =
0.64. The agreement between theoretical and numerical results is
good again. The previous comparisons between theoretical results
and numerical simulations have demonstrated the validity of eqs (9)
and (12) to provide a good estimate of the amplitude of the leading
water wave.

Results derived in Sections 3 and 4 are summarized in Fig. 16
where the time evolution of the amplitude of the leading wave for

Figure 16. Numerical and theoretical temporal evolutions of leading wave
amplitude for two cases corresponding to V = 1 m s−1, H = 1 m, β =
35◦, α = 10◦ (circles and Fr < 1/2) and V = 1 m s−1, H = 0.3 m, β =
35◦, α = 10◦ (diamonds and Fr > 1/2), respectively. Solid and dashed
lines correspond to eqs (9) and (12), respectively. An excellent agreement
between the theory and numerical simulations is obtained.

two cases corresponding to Fr < 1/2 and Fr > 1/2, respectively,
is shown. The solid lines correspond to eq. (9) and describe the
propagation regime (t > tsolid): the leading wave amplitude decreases
as t−1/3. The dashed lines correspond to eq. (12) associated with the
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generation regime (t < tsolid): the leading wave amplitude in-
creases as t1/2. The agreement between theoretical and numerical
results is good except around t = tsolid which separates the two
regimes.

5 A P P L I C AT I O N O F T H E D E R I V E D
S C A L I N G L AW S

In the previous section we have obtained scaling laws to predict the
time evolution of the maximum amplitude of a wave generated by
a solid landslide. To confirm their forecast abilities, we compare
them with two laboratory experiments.

5.1 Comparison with our experiments

To compare the previously obtained results and experimental ones
under similar conditions, we have to define the velocity of the solid.
Indeed, in the experiment this velocity is not constant anymore but
is time dependent. The first approximation is to consider the mean
velocity of the mobile during its motion. We may expect that the
corresponding dimensional analysis solution will underestimate the
amplitude of the generated wave. Another possibility is to consider
the maximum velocity of the slide. In this case we can expect an
overestimate of the amplitude of the generated wave. Fig. 17 shows
a comparison between experimental, numerical and dimensional
analysis amplitude evolution as a function of time for two subaerial
experiments corresponding to H = 0.43 m and H = 0.38 m, re-
spectively. For both experiments, the slope angle is β = 35◦, the
angle between the front of the solid and the vertical is α = 10◦

and the mass is the same. In the generation regime, the dashed
lines correspond to a slide with a constant velocity V = Vmax (with
Vmax = 1.56 m s−1)and Fr > 1/2 whereas the dot-dashed lines cor-
respond to V = Vmean (with Vmean = 0, 99 m s−1) and Fr < 1/2.
Wave propagation begins as soon as the solid reaches the bottom
of the tank. In this regime, we use the mean velocity of the slide
to compute the Froude number and select the appropriate formula.
In both experiments, the Froude number in the propagation regime
remains smaller than 1/2. In Fig. 17(a), experimental and numeri-
cal results are in relative good agreement. The results given by SPH
and Gerris are quite similar. As expected, the scaling law (12) for
Fr < 1/2 underestimates the leading wave amplitude but the one for
Fr > 1/2 (taking into account the maximum velocity of the solid) is
in a good agreement with the numerical simulations. Nevertheless
the theory correctly describes the behaviour of the amplitude. Once
the solid reaches the bottom of the tank, the generation stage ends
and the wave amplitude decreases as t−1/3 during the propagation
regime. The small difference between theoretical and experimen-
tal results is due to the fact that the considered Froude number is
very close to the critical value Fr = 1/2. For the lower water depth
(Fig. 17b), the numerical, experimental and dimensional analysis’
results are in an excellent agreement.

5.2 Comparison with Heinrich’s experiments

We have compared our theoretical results with the subaerial exper-
imental data of Heinrich (1992) presented above in subsection B.
The initial water depth is H = 0.4 m, the slope angle β = 45◦ and
the solid impacts the undisturbed free surface vertically which cor-
responds to α = 0◦. The vertical displacement of the solid during the
experiment was given in Heinrich (1992), allowing the computation
of the solid velocity. Fig. 18 displays the experimental, numerical

Figure 17. Temporal evolution of the leading wave amplitude for (a) H =
0.43 m and (b) H = 0.38 m. Experiments (�), Gerris simulation (©), SPH
simulation (�), dimensional analysis in the propagation stage (solid lines),
in the generation stage (dashed lines for V = Vmax and dot-dashed lines for
V = Vmean).

and theoretical time evolution of the maximum amplitude for the
subaerial experiment conducted by Heinrich (1992). As previously,
in the generation zone, we consider two cases: V = Vmean and V =
Vmax. The mean velocity of the solid is about 0.97 m s−1, corre-
sponding to Fr = 0.49. During the propagation, both scalings for
Fr < 1/2 and Fr > 1/2 are used (eq. 9). One can observe in the
propagation regime that the dimensional analysis overestimates the
experimental results for Fr < 1/2 whereas Gerris underestimates
them. As discussed previously, the weak discrepancy observed be-
tween theoretical and experimental results may be explained by
the fact that the Froude number is very close to the critical value
Fr = 1/2.

6 C O N C LU S I O N

An experimental, numerical and analytical investigation on waves
generated by solid subaerial landslides is reported. Numerical sim-
ulations are run with two different codes based on the smoothed-
particle hydrodynamics (SPH) method and on the Finite-volume
method, respectively. We have shown that both methods are quite
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Figure 18. Temporal evolution of the leading wave amplitude in the case
of Heinrich’s experiments: comparison between experimental results (�),
Gerris results (©) and our proposed scaling laws in the propagation regime
(solid line for Fr < 1/2 and black dashed line for Fr > 1/2), in the generation
regime (red dashed line for V = Vmax and dot-dashed line for V = Vmean).

complementary, SPH being more accurate in the generation stage
but very expensive for the simulation of the propagation, whereas
Gerris can efficiently simulate the propagation. Furthermore, based
on the numerical simulations, scaling laws on the temporal evolu-
tion of the leading wave amplitude are derived for the generation
and propagation regimes, respectively. From these laws, we can
claim that for waves generated by solid landslides the most im-
portant parameters are the velocity of the slide and water depth.
Indeed, generation and propagation both depend on the Froude
number which is directly linked to those parameters. This is con-
sistent with previous studies (Kamphuis & Bowering 1972; Walder
et al. 2003). The validity of these approximate solutions derived
from a dimensional analysis is tested by comparison with present
experiments and those of Heinrich (1992). The comparison demon-
strates that the results obtained from theoretical approximations
and numerical models are in good agreement with the experimental
data.

However, an improvement of the theory is needed to describe
more realistic cases of tsunami waves generated by subaerial land-
slides, namely in the generation stage. Indeed, waves generated
by subaerial landslides depend strongly on the slide parameters,
namely the volume, velocity and rigidity of the slide (Fritz 2002;
Ataie-Ashtiani & Nik-Khah 2008). Experiments and numerical sim-
ulations are in progress with granular media to study the influence
of the slide rheology on the generated waves. A similar study is
currently underway to extend our results to cases where 3-D effects
are important.
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A P P E N D I X A : S C O T T RU S S E L L’ S WAV E
G E N E R AT O R

After some experiments on design for canal boat, the naval engineer
John Scott Russell discovered the solitary wave. He explained that
the mass of water accumulated round the prow of the vessel leave
it behind when it suddenly stops. He experimentally reproduced
a solitary wave in a long rectangular tank with a weighted box
falling down vertically in water. To validate the numerical model,
we compare our simulation results to the experiments of Monaghan
& Kos (2000).

Monaghan and Kos’ experiments have been conducted in a 9-m-
long, 0.4-m-high and 0.4-m-wide wave tank. The box has a length
of 0.3 m, a width of 0.39 m, a height of 0.4 m and a weight of
38.2 kg. Three experiments were done at different water depths
(D = 0.116, 0.21 and 0.288 m), the initial position of the box was
0.5 cm above the undisturbed free surface and 2 cm from the left
side of the tank. Time evolution of the free surface deformations
is measured with a wave gauge located at 1.2 m from the left side
of the canal. From those experiments they observed that in the
three cases the main behaviour was the same. A vortex occurred
at the lower right corner of the box and was advected rightward.
One can also note the increase of the amplitude of the solitary
wave when the water depth decreases. A numerical simulation was
performed for each water depth. In our model, the free fall is not
implemented: the velocity of the solid is imposed all along the
motion. We consider the experimental data given in Monaghan &
Kos (2000) for the three cases. In Fig. A1 comparisons between
snaphots of the experiment and numerical results are shown for
a water depth D = 0.21 m. As in the experiment, a vortex can be
observed in the lower right corner of the block and is advected right-
ward during the motion. At t = 0.27 s, we observe the formation

Figure A1. Comparison between Monaghan & Kos’ experiments and present numerical simulations for a depth D = 0.21 m. Time increases from left to right:
t = 0.21, 0.42, 0.61 and 0.70 s.
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Table A1. Wave amplitude in metres for the experiments and
simulations with different levels of refinement. As expected, in-
creasing the refinement improves the accuracy of the results.
Numerical errors at level 7 is shown in Fig. A2(b).

Experiments Level 6 Level 7 Level 8

D = 0.116 m 0.109 ± 0.02 0.084 0.096 0.092
D = 0.21 m 0.092 ± 0.01 0.106 0.097 0.093
D = 0.288 m 0.093 ± 0.01 0.133 0.099 0.095

of a reverse plunging wave impacting the solid. This has also been
observed by Monaghan & Kos (2000) in their experiments and sim-
ulations. Our numerical simulations qualitatively agree with their
experiments.

Table A1 shows the wave amplitude for the experiments and sim-
ulations, respectively. Results are given for three different spatial
resolution in the three considered cases in the experiments. Here
again we use the values of density and viscosity for air and water at
ambient temperature, the solver is tuned the same way as for ours
experiments. The boundary conditions are a free-slip boundary on

Figure A2. (a) Convergence of the error on the amplitude (Error = |Aexp −
Anum|/Aexp) as a function of the spatial resolution. D = 0.21 m (◦), D =
0.288 m (�) (see Table A1). Dashed and solid black lines represent the
slope in N−2, with N the number of cells. (b) Comparison of the error on
the amplitude between Gerris (�), Monaghan & Kos (2000) (◦) and Abadie
et al. (2010) (�). Numerical results are in good agreement with experiments
and previous numerical simulations.

the lateral side of the domain, a free outflow for the top boundary
and a no-slip conditions for the bottom. Due to the adaptive mesh
refinement and parallelization of the model, computations for the
finest mesh last around 4 hr on 4 processors (Intel Xeon 2.80 GHz)

Figure B1. Comparison between numerical and experimental wave profiles
(from left to right) at t = 0.5, 1 and 1.5 s. Heinrich’s experiments (©),
Gerris (solid line). Computed free surface is in very good agreement with
the experiment.
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and only 10 min for the coarsest mesh. We only simulate 1 s of the
experiment, which is long enough to allow the wave to reach the
probe. The use of a finer grid improves the accuracy of the results
on the wave amplitude except for the lowest water depth. Fig. A2
shows the adaptive convergence results for the water depth D =
0.21 and 0.288 m. The number of cells for the three refinements
is calculated when the maximum amplitude reach the probe. The
maximum amplitude arrival time at the probe can vary from about
0.02 s depending on the refinement. Consistent convergence is ob-
tained and is very close to a second-order convergence with the
number of cells (dashed and solid black curve in Fig. A2a). Nu-
merical errors between our results and those of Monaghan & Kos
(2000) and Abadie et al. (2010) are compared for the three water
depths (Fig. A2b). The experimental results are chosen as refer-
ence. The refinement level is set equal to 7 (our smallest cell edge
is then about 7 mm), which is a good trade-off between accuracy
and computational time (see Table A1). Our simulations are in good
agreement with experiments. The maximum relative error with the
measured wave heights is 12 per cent, which is comparable to the
experimental error (20 per cent for the lowest water depth).

A P P E N D I X B : H E I N R I C H
E X P E R I M E N T S

The experiment consists of a triangular (0.5 m × 0.5 m in cross-
section) rigid block sliding down a 45◦ slope. The water depth was
1 m and the top of the block was initially located 1 cm below
the free surface. A 35 mm camera was used to follow the free-
surface evolution as a function of time. Three electrical contact-type
gauges were used to measure the wave heights at 4, 8 and 12 m.
In our simulation, the domain corresponds to a 8 m × 8 m square,
so comparison with the experiment is only available for the first
gauge, the second one being too close to the wall where reflection
occurs very soon. Heinrich (1992) used two other gauges along the
flume width at X = 4 m, located at 10 cm from both walls. With
these gauges he confirmed that, at this location, the experiment was
unidimensional along the flume width. Our numerical results are
compared to Heinrich’s experiments. Here again we used the real
value of density and viscosity, so the solver is tuned in the same
way as for the Russell’s wave generator simulations (Section A).
The maximum refinement level is 10, which gives a smallest cell
edge of 8/210 ≈ 8 mm. The boundary conditions for this simulation
are the same as Section 2.2 (see this section for further details).
The computation time for this configuration is about 1.5 hr on one
processor (Intel Xeon 2.80 GHz). In Fig. B1 is shown a comparison
between the computed and experimental wave profiles at t = 0.5,

Figure B2. Comparison between Heinrich’s experiment and numerical sim-
ulation at probe located at 4 m from the left end of the tank. Heinrich’s
experiments (©), Gerris (solid line).

1 and 1.5 s. We can observe that the overall behaviour of the free-
surface displacement is in good agreement with the experiment. At
t = 0.5 s, discrepancies occur near the solid. This has also been
observed in earlier simulations (Heinrich 1992; Abadie et al. 2010)
and can be explained by the highly turbulent motions near the solid.
At t = 1 s, we observe the same phenomenon near the slide where
the simulated trough is smaller than the experiment. At t = 1.5 s
a slight plunging breaker is observed in the simulation. For all the
cases in the propagation regime, our numerical results are in very
good agreement with the experiment. Fig. B2 demonstrates this
overall good agreement, comparing the time evolution of the free-
surface elevation at the first gauge during the first 6 s. The first
small crest is slightly underestimated in the simulation whereas the
following trough and the highest crest are correctly reproduced. In
the dispersive region, the amplitude of the crest is slightly under-
predicted by the model (at t = 4 s) but the trough is still correctly
modeled.

The validation cases presented above show that Gerris can
accurately reproduce the free-surface evolution even for
subaerial landslide cases that imply strong interaction
between solid and water. The submarine simulation is in
good agreement with the other examples (http://gfs.sourceforge.
net/wiki/index.php/Landslide-generated_tsunamis) where the
overall behaviour of the free-surface displacement is correctly
numerically reproduced.

http://gfs.sourceforge.net/wiki/index.php/Landslide-generated_tsunamis
http://gfs.sourceforge.net/wiki/index.php/Landslide-generated_tsunamis

