91 research outputs found

    Altered Dopamine Signaling in Naturally Occurring Maternal Neglect

    Get PDF
    Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking.The current study characterizes a population of mice (MaD1) which naturally exhibit maternal neglect (little or no care of offspring) at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI), ventral tegmental area (VTA), and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production) was significantly elevated in ZI and higher in VTA (although not significantly) in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams.These findings suggest that atypical dopamine activity within the maternal brain, especially within regions involved in reward, is involved in naturally occurring neglect and that MaD1 mice are a useful model for understanding the basis of naturally occurring neglect

    PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia

    Get PDF
    The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondria) apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (EZH2, FED, or SUZ12) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor CRIP2 and downstream up-regulation of the mitochondrial chaperone TRAP1. These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response

    A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship

    Get PDF
    Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship

    Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders

    Get PDF
    Background: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder. Methods: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review. Results: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites. Conclusions: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified. Keywords: CDK13, CHDFIDD, De novo variant, Neurodevelopmental disorders, Agenesis of the corpus callosum, Hypertelorism, Developmental delay, Cyclin-dependent kinase, Undiagnosed Diseases Networ

    Origins Space Telescope science drivers to design traceability

    Get PDF
    The Origins Space Telescope (Origins) concept is designed to investigate the creation and dispersal of elements essential to life, the formation of planetary systems, and the transport of water to habitable worlds and the atmospheres of exoplanets around nearby K-and M-dwarfs to identify potentially habitable-and even inhabited-worlds. These science priorities are aligned with NASA\u27s three major astrophysics science goals: How does the Universe work? How did we get here? and Are we alone? We briefly describe the science case that arose from the astronomical community and the science traceability matrix for Origins. The science traceability matrix prescribes the design of Origins and demonstrates that it will address the key science questions motivated by the science case

    Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs

    Get PDF
    Citation: Crawford, K., Lager, K., Miller, L., Opriessnig, T., Gerber, P., & Hesse, R. (2015). Evaluation of porcine epidemic diarrhea virus transmission and the immune response in growing pigs. Veterinary Research, 46, 9. doi:10.1186/s13567-015-0180-5Clinical disease associated with porcine epidemic diarrhea virus (PEDV) infection in naive pigs is well chronicled; however, information on endemic PEDV infection is limited. To characterize chronic PEDV infection, the duration of infectious virus shedding and development of protective immunity was determined. On Day 0 (D0), a growing pig was challenged with PEDV and 13 contacts were commingled. On D7, 9 contact pigs (principal virus group (PG)), were selected, moved to a separate room and commingled with one sentinel pig (S1). This process was repeated weekly with S2, S3 and S4. The PG was PEDV-positive by PCR from D3-11, with some pigs intermittently positive to D42. Pigs S1 and S2 were PEDV-positive within 24 hours of commingling. Antibodies were detected in all PG by D21 and by 7 days post-contact in S1 and S2. Pigs S3 and S4 were PCR and antibody negative following commingling. To evaluate protective immunity, 5 naive pigs (N) and the PG were challenged (N/C, PG/C) with homologous virus on D49. All N/C pigs were PEDV PCR-positive by D52 with detection out to D62 in 3/5 N/C pigs. All PG/C pigs were PEDV PCR-negative post-challenge. By D63, all N/C seroconverted. Although PEDV RNA was demonstrated in pigs after primary infection until D42, infectious PEDV capable of horizontal transmission to naive pigs was only shed 14-16 days after infection to age-matched pigs. Homologous re-challenge 49 days post initial PEDV exposure did not result in re-infection of the pigs. This demonstrates potential for an effective PEDV vaccine

    Origins Space Telescope: Baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins\u27 natural background-limited sensitivity

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity
    corecore