42 research outputs found

    A Comprehensive Molecular Characterization of the Pancreatic Neuroendocrine Tumor Cell Lines BON-1 and QGP-1

    Get PDF
    Experimental models of neuroendocrine tumor disease are scarce, with only a few existing neuroendocrine tumor cell lines of pancreatic origin (panNET). Their molecular characterization has so far focused on the neuroendocrine phenotype and cancer-related mutations, while a transcription-based assessment of their developmental origin and malignant potential is lacking. In this study, we performed immunoblotting and qPCR analysis of neuroendocrine, epithelial, developmental endocrine-related genes as well as next-generation sequencing (NGS) analysis of microRNAs (miRs) on three panNET cell lines, BON-1, QGP-1, and NT-3. All three lines displayed a neuroendocrine and epithelial phenotype; however, while insulinoma-derived NT-3 cells preferentially expressed markers of mature functional pancreatic β-cells (i.e., INS, MAFA), both BON-1 and QGP-1 displayed high expression of genes associated with immature or non-functional β/δ-cells genes (i.e., NEUROG3), or pancreatic endocrine progenitors (i.e., FOXA2). NGS-based identification of miRs in BON-1 and QGP-1 cells revealed the presence of all six members of the miR-17-92 cluster, which have been implicated in b-cell function and differentiation, but also have roles in cancer being both oncogenic or tumor suppressive. Notably, both BON-1 and QGP-1 cells expressed several miRs known to be negatively associated with epithelial-mesenchymal transition, invasion or metastasis. Moreover, both cell lines failed to exhibit migratory activity in vitro. Taken together, NT-3 cells resemble mature functional β-cells, while both BON-1 and QGP-1 are more similar to immature/non-functional pancreatic β/δ-cells or pancreatic endocrine progenitors. Based on the recent identification of three transcriptional subtypes in panNETs, NT-3 cells resemble the "islet/insulinoma tumors" (IT) subtype, while BON-1 and QGP-1 cells were tentatively classified as "metastasis-like/primary" (MLP). Our results provide a comprehensive characterization of three panNET cell lines and demonstrate their relevance as neuroendocrine tumor models

    Comprehensive biomarker analysis of long-term response to trastuzumab in patients with HER2-positive advanced gastric or gastroesophageal adenocarcinoma

    Get PDF
    Background A subgroup of patients with HER2-positive metastatic gastric and gastroesophageal junction cancers shows long-term response under trastuzumab maintenance monotherapy. Obviously, HER2 status alone is not able to identify these patients. We performed this study to identify potential new prognostic biomarkers for this long-term responding patient group. Patients and methods Tumor samples of 19 patients with HER2-positive metastatic gastric and gastroesophageal junction cancer who underwent trastuzumab treatment were retrospectively collected from multiple centers. Patients were divided into long-term responding (n=7) or short-term responding group (n=12) according to progression-free survival (PFS≥12 months vs. PFS<12 months). Next generation sequencing and microarray-based gene expression analysis were performed along with HER2 and PD-L1 immunohistochemistry. Results Long-term responding patients had significantly higher PD-L1 combined positive scores (CPS) and CPS correlated with longer progression-free survival. PD-L1 positivity (CPS≥1) was further associated with an increased CD4+ memory T-cell score. The ERBB2 copy number as well as the tumor mutational burden could not discriminate between short-term and long-term responding patients. Genetic alterations and co-amplifications in HER2 pathway associated genes such as EGFR, which were connected to trastuzumab resistance, were present in 10% of the patients and equally distributed between the groups. Conclusion The study highlights the clinical relevance of PD-L1 testing also in the context of trastuzumab treatment and offers a biological rational by demonstrating elevated CD4+ memory T-cells scores in the PD-L1-positive group

    Feasibility study of portable technology for weight loss and HbA1c control in type 2 diabetes

    Get PDF
    Background The study investigated the feasibility of conducting a future Randomised Controlled Trial (RCT) of a mobile health (mHealth) intervention for weight loss and HbA1c reduction in Type 2 Diabetes Mellitus (T2DM). Methods The intervention was a small wearable mHealth device used over 12 weeks by overweight people with T2DM with the intent to lose weight and reduce their HbA1c level. A 4 week maintenance period using the device followed. The device records physical activity level and information about food consumption, and provides motivational feedback based on energy balance. Twenty-seven participants were randomised to receive no intervention; intervention alone; or intervention plus weekly motivational support. All participants received advice on diet and exercise at the start of the study. Weight and HbA1c levels were recorded at baseline and weeks 6, 12, and 16. Qualitative interviews were conducted with participants who received the intervention to explore their experiences of using the device and involvement in the study including the training received. Results Overall the device was perceived to be well-liked, acceptable, motivational and easy to use by participants. Some logistical changes were required during the feasibility study, including shortening of the study duration and relaxation of participant inclusion criteria. Descriptive statistics of weight and HbA1c data showed promising trends of weight loss and HbA1c reduction in both intervention groups, although this should be interpreted with caution. Conclusions A number of methodological recommendations for a future RCT emerged from the current feasibility study. The mHealth device was acceptable and promising for helping individuals with T2DM to reduce their HbA1c and lose weight. Devices with similar features should be tested further in larger studies which follow these methodological recommendations

    Effect of garlic on cardiovascular disorders: a review

    Get PDF
    Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic

    Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer

    Get PDF
    BACKGROUND: S100A9 was originally discovered as a factor secreted by inflammatory cells. Recently, S100A9 was found to be associated with several human malignancies. The purpose of this study is to investigate S100A9 expression in gastric cancer and explore its role in cancer progression. METHODS: S100A9 expression in gastric tissue samples from 177 gastric cancer patients was assessed by immunohistochemistry. The expression of its dimerization partner S100A8 and the S100A8/A9 heterodimer were also assessed by the same method. The effect of exogenous S100A9 on motility of gastric cancer cells AGS and BGC-823 was then investigated. RESULTS: S100A9 was specifically expressed by inflammatory cells such as macrophages and neutrophils in human gastric cancer and gastritis tissues. Statistical analysis showed that a high S100A9 cell count (> = 200) per 200x magnification microscopic field in cancer tissues was predictive of early stage gastric cancer. High S100A9-positive cell count was negatively correlated with lymph node metastasis (P = 0.009) and tumor invasion (P = 0.011). S100A9 was identified as an independent prognostic predictor of overall survival of patients with gastric cancer (P = 0.04). Patients with high S100A9 cell count were with favorable prognosis (P = 0.021). Further investigation found that S100A8 distribution in human gastric cancer tissues was similar to S100A9. However, the number of S100A8-positive cells did not positively correlate with patient survival. The inflammatory cells infiltrating cancer were S100A8/A9 negative, while those in gastritis were positive. Furthermore, exogenous S100A9 protein inhibited migration and invasion of gastric cancer cells. CONCLUSIONS: Our results suggested S100A9-positive inflammatory cells in gastric cancer tissues are associated with early stage of gastric cancer and good prognosis

    Tailored Systemic Therapy for Colorectal Cancer Liver Metastases

    No full text
    Liver metastases are the most common site of metastatic spread in colorectal cancer. Current treatment approaches involve effective systemic therapies in combination with surgical and/or interventional strategies. Multimodal strategies greatly improved clinical outcomes of patients with metastatic colorectal cancer over the last decades. Identification of predictive and prognostic biomarkers helped to comprehensively refine individual targeted treatment approaches and resulted in median overall survival rates of 30 months or longer. Current guidelines, thus, recommend treatment selection according to patients’ performance status, tumor localization and stage as well as the tumor’s molecular and genetic status. Here, we outline the latest developments in molecular decision-making for patients with upfront resectable, potentially or initially unresectable and non/never-resectable colorectal cancer liver metastases

    Differential Effects of Somatostatin, Octreotide, and Lanreotide on Neuroendocrine Differentiation and Proliferation in Established and Primary NET Cell Lines: Possible Crosstalk with TGF-&beta; Signaling

    No full text
    GEP-NETs are heterogeneous tumors originating from the pancreas (panNET) or the intestinal tract. Only a few patients with NETs are amenable to curative tumor resection, and for most patients, only palliative treatments to successfully control the disease or manage symptoms remain, such as with synthetic somatostatin (SST) analogs (SSAs), such as octreotide (OCT) or lanreotide (LAN). However, even cells expressing low levels of SST receptors (SSTRs) may exhibit significant responses to OCT, which suggests the possibility that SSAs signal through alternative mechanisms, e.g., transforming growth factor (TGF)-&beta;. This signaling mode has been demonstrated in the established panNET line BON but not yet in other permanent (i.e., QGP) or primary (i.e., NT-3) panNET-derived cells. Here, we performed qPCR, immunoblot analyses, and cell counting assays to assess the effects of SST, OCT, LAN, and TGF-&beta;1 on neuroendocrine marker expression and cell proliferation in NT-3, QGP, and BON cells. SST and SSAs were found to regulate a set of neuroendocrine genes in all three cell lines, with the effects of SST, mainly LAN, often differing from those of OCT. However, unlike NT-3 cells, BON cells failed to respond to OCT with growth arrest but paradoxically exhibited a growth-stimulatory effect after treatment with LAN. As previously shown for BON, NT-3 cells responded to TGF-&beta;1 treatment with induction of expression of SST and SSTR2/5. Of note, the ability of NT-3 cells to respond to TGF-&beta;1 with upregulation of the established TGF-&beta; target gene SERPINE1 depended on cellular adherence to a collagen-coated matrix. Moreover, when applied to NT-3 cells for an extended period, i.e., 14 days, TGF-&beta;1 induced growth suppression as shown earlier for BON cells. Finally, next-generation sequencing-based identification of microRNAs (miRNAs) in BON and NT-3 revealed that SST and OCT impact positively or negatively on the regulation of specific miRNAs. Our results suggest that primary panNET cells, such as NT-3, respond similarly as BON cells to SST, SSA, and TGF-&beta; treatment and thus provide circumstantial evidence that crosstalk of SST and TGF-&beta; signaling is not confined to BON cells but is a general feature of panNETs
    corecore