7,290 research outputs found

    Analysis of chromosomal radiosensitivity of healthy BRCA2 mutation carriers and non-carriers in BRCA families with the G2 micronucleus assay

    Get PDF
    Breast cancer risk drastically increases in individuals with a heterozygous germline BRCA1 or BRCA2 mutation, while it is estimated to equal the population risk for relatives without the familial mutation (non-carriers). The aim of the present study was to use a G2 phase-specific micronucleus assay to investigate whether lymphocytes of healthy BRCA2 mutation carriers are characterized by increased radiosensitivity compared to controls without a family history of breast/ovarian cancer and how this relates to healthy non-carrier relatives. BRCA2 is active in homologous recombination, a DNA damage repair pathway, specifically active in the late S/G2 phase of the cell cycle. We found a significantly increased radiosensitivity in a cohort of healthy BRCA2 mutation carriers compared to individuals without a familial history of breast cancer (P=0.046; Mann-Whitney U test). At the individual level, 50% of healthy BRCA2 mutation carriers showed a radiosensitive phenotype (radiosensitivity score of 1 or 2), whereas 83% of the controls showed no radiosensitivity (P=0.038; one-tailed Fisher's exact test). An odds ratio of 5 (95% CI, 1.07-23.47) indicated an association between the BRCA2 mutation and radiosensitivity in healthy mutation carriers. These results indicate the need for the gentle use of ionizing radiation for either diagnostic or therapeutic use in BRCA2 mutation carriers. We detected no increased radiosensitivity in the non-carrier relatives

    Focus on 16p13.3 Locus in colon cancer

    Get PDF
    Background : With one million new cases of colorectal cancer (CRC) diagnosed annually in the world, CRC is the third most commonly diagnosed cancer in the Western world. Patients with stage I-III CRC can be cured with surgery but are at risk for recurrence. Colorectal cancer is characterized by the presence of chromosomal deletions and gains. Large genomic profiling studies have however not been conducted in this disease. The number of a specific genetic aberration in a tumour sample could correlate with recurrence-free survival or overall survival, possibly leading to its use as biomarker for therapeutic decisions. At this point there are not sufficient markers for prediction of disease recurrence in colorectal cancer, which can be used in the clinic to discriminate between stage II patients who will benefit from adjuvant chemotherapy. For instance, the benefit of adjuvant chemotherapy has been most clearly demonstrated in stage III disease with an approximately 30 percent relative reduction in the risk of disease recurrence. The benefits of adjuvant chemotherapy in stage II disease are less certain, the risk for relapse is much smaller in the overall group and the specific patients at risk are hard to identify. Materials and Methods : In this study, array-comparative genomic hybridization analysis (array-CGH) was applied to study high-resolution DNA copy number alterations in 93 colon carcinoma samples. These genomic data were combined with parameters like KRAS mutation status, microsatellite status and clinicopathological characteristics. Results : Both large and small chromosomal losses and gains were identified in our sample cohort. Recurrent gains were found for chromosome 1q, 7, 8q, 13 and 20 and losses were mostly found for 1p, 4, 8p, 14, 15, 17p, 18, 21 and 22. Data analysis demonstrated that loss of chromosome 4 is linked to a worse prognosis in our patients series. Besides these alterations, two interesting small regions of overlap were identified, which could be associated with disease recurrence. Gain of the 16p13.3 locus (including the RNA binding protein, fox-1 homolog gene, RBFOX1) was linked with a worse recurrence-free survival in our patient cohort. On the other hand, loss of RBFOX1 was only found in patients without disease recurrence. Most interestingly, above mentioned characteristics were also found in stage II patients, for whom there is a high medical need for the identification of new prognostic biomarkers. Conclusions : In conclusion, copy number variation of the 16p13.3 locus seems to be an important parameter for prediction of disease recurrence in colon cancer

    Generational Gaps in Political Media Use and Civic Engagement

    Get PDF
    "This book investigates news use patterns among five different generations in a time where digital media create a multi-choice media environment. The book introduces a new model – The EPIG Model (Engagement-Participation-Information*Generation) – to study how different generational cohorts’ exposure to political information is related to their political engagement and participation. The authors build on a multi-method framework to determine direct and indirect media effects across generations. The unique dataset allows for comparison of effects between legacy and social media use and helps to disentangle the influence on citizens’ political involvement in nonelection as well as during political campaign times. Bringing the newly of-age Generation Z into the picture, the book presents an in-depth understanding of how a changing media environment presents different challenges and opportunities for political involvement of this, as well as older generations. Bringing the conversation around political engagement and the media up to date for the new generation, this book will be of key importance to scholars and students in the areas of media studies, communication studies, technology, political science and political communication.

    Case studies for the Danish EUDP project “IEA OES Task 10 Phase III – WEC Modelling”:Milestone M1 report

    Get PDF
    The project “IEA OES Task 10 Phase III – WEC Modelling” is a publicly-funded research project under the Danish Energy Agency EUDP grant with Journal no. 134232-510153. As part of the initial period of the project, a selection of three test cases has been defined under WP2. The present report forms the deliverable for Milestone “M1: Case studies defined”

    Evaluation of relative quantification of alternatively spliced transcripts using droplet digital PCR

    Get PDF
    Introduction: For the relative quantification of isoform expression, RT-qPCR has been the gold standard for over a decade. More recently, digital PCR is becoming widely implemented, as it is promised to be more accurate, sensitive and less affected by inhibitors, without the need for standard curves. In this study we evaluated RT-qPCR versus RT-droplet digital PCR (ddPCR) for the relative quantification of isoforms in controls and carriers of the splice site mutation BRCA1 c.212+3A>G, associated with increased expression of several isoforms. Materials and methods: RNA was extracted from EBV cell lines of controls and heterozygous BRCA1 c.212+3A>G carriers. Transcript-specific plasmids were available to determine the efficiency, precision, reproducibility and accuracy of each method. Results: Both ddPCR and RT-qPCR were able to accurately quantify all targets and showed the same LOB, LOD and LOQ; also precision and reproducibility were similar. Both techniques have the same dynamic range and linearity at biologically relevant template concentrations. However, a significantly higher cost and workload was required for ddPCR experiments. Conclusions: Our study recognizes the potential and validity of digital PCR but shows the value of a highly optimized qPCR for the relative quantification of isoforms. Cost efficiency and simplicity turned out to be better for RT-qPCR. Keywords: Reverse transcriptase polymerase chain reaction, Alternative splicing, Droplet digital PC

    Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation

    Get PDF
    Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene. Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD

    State-of-the-art three-dimensional analysis of soft tissue changes following Le Fort I maxillary advancement

    Get PDF
    We describe the comprehensive 3-dimensional analysis of facial changes after Le Fort I osteotomy and introduce a new tool for anthropometric analysis of the face. We studied the cone-beam computed tomograms of 33 patients taken one month before and 6-12 months after Le Fort I maxillary advancement with or without posterior vertical impaction. Use of a generic facial mesh for dense correspondence analysis of changes in the soft tissue showed a mean (SD) anteroposterior advancement of the maxilla of 5.9 (1.7) mm, and mean (SD) minimal anterior and posterior vertical maxillary impaction of 0.1 (1.7) mm and 0.6 (1.45) mm, respectively. It also showed distinctive forward and marked lateral expansion around the upper lip and nose, and pronounced upward movement of the alar curvature and columella. The nose was widened and the nostrils advanced. There was minimal forward change at the base of the nose (subnasale and alar base) but a noticeable upward movement at the nasal tip. Changes at the cheeks were minimal. Analysis showed widening of the midface and upper lip which, to our knowledge, has not been reported before. The nostrils were compressed and widened, and the lower lip shortened. Changes at the chin and lower lip were secondary to the limited maxillary impaction

    A simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation

    Get PDF
    In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm2 are achieved when biomass—bamboo charcoal and wood, respectively–is used as fuel. At 600°C, a stable performance is observed during the measured 90 hours after the initial degradation. In this MCFC, CO2 is produced at the anode when carbon-containing fuels are used. The produced CO2 then dissolves and diffuses to the cathode to react with oxygen in open air, forming the required Embedded Image or Embedded Image ions for continuous operation. The dissolved Embedded Image ions may also take part in the cell reactions. This provides a simple new fuel cell technology to directly convert carbon-containing fuels such as carbon and biomass into electricity with high efficiency
    • …
    corecore