1,806 research outputs found

    Application of Minimal Subtraction Renormalization to Crossover Behavior near the 3^3He Liquid-Vapor Critical Point

    Full text link
    Parametric expressions are used to calculate the isothermal susceptibility, specific heat, order parameter, and correlation length along the critical isochore and coexistence curve from the asymptotic region to crossover region. These expressions are based on the minimal-subtraction renormalization scheme within the ϕ4\phi^4 model. Using two adjustable parameters in these expressions, we fit the theory globally to recently obtained experimental measurements of isothermal susceptibility and specific heat along the critical isochore and coexistence curve, and early measurements of coexistence curve and light scattering intensity along the critical isochore of 3^3He near its liquid-vapor critical point. The theory provides good agreement with these experimental measurements within the reduced temperature range t2×102|t| \le 2\times 10^{-2}

    The neutral gas extent of galaxies as derived from weak intervening CaII absorbers

    Full text link
    (Abridged) We present a systematic study of weak intervening CaII absorbers at low redshift (z<0.5), based on the analysis of archival high resolution (R>45,000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Dz~100 we detected 23 intervening CaII absorbers in both the CaII H & K lines, with rest frame equivalent widths W_r,3934=15-799 mA and column densities log N(CaII)=11.25-13.04. We obtain a bias corrected number density of weak intervening CaII absorbers of dN/dz=0.117+-0.044 at z=0.35 for absorbers with log N(CaII)>11.65. This is ~2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. From ionization modeling we conclude that intervening CaII absorption with log N(CaII)>11.5 arises in optically thick neutral gas in DLAs, sub-DLAs and Lyman limit systems (LLS) at HI column densities of log N(HI)>17.4. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace dusty neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Considering all galaxies with luminosities L>0.05L* we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI)>17.4 around low-redshift galaxies is R_HVC ~ 55 kpc.Comment: 20 pages, 15 figures; A&A, in press; this revision contains several changes that improve clarity of presentation reflecting the suggestions made by the refere

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status

    Full text link
    Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157–173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research

    Quantum-scissors device for optical state truncation: A proposal for practical realization

    Get PDF
    We propose a realizable experimental scheme to prepare superposition of the vacuum and one-photon states by truncating an input coherent state. The scheme is based on the quantum scissors device proposed by Pegg, Phillips, and Barnett [Phys. Rev. Lett. 81, 1604 (1998)] and uses photon-counting detectors, a single-photon source, and linear optical elements. Realistic features of the photon counting and single-photon generation are taken into account and possible error sources are discussed together with their effect on the fidelity and efficiency of the truncation process. Wigner function and phase distribution of the generated states are given and discussed for the evaluation of the proposed scheme.Comment: 11 pages, 12 figures, the final version to appear in Phys. Rev. A64, 0638xx (2001

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields

    Get PDF
    Measurements of the physical properties of accretion disks in active galactic nuclei are important for better understanding the growth and evolution of supermassive black holes. We present the accretion disk sizes of 22 quasars from continuum reverberation mapping with data from the Dark Energy Survey (DES) standard star fields and the supernova C fields. We construct continuum lightcurves with the \textit{griz} photometry that span five seasons of DES observations. These data sample the time variability of the quasars with a cadence as short as one day, which corresponds to a rest frame cadence that is a factor of a few higher than most previous work. We derive time lags between bands with both JAVELIN and the interpolated cross-correlation function method, and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new measurements include disks around black holes with masses as small as 107\sim10^7 MM_{\odot}, which have equivalent sizes at 2500\AA \, as small as 0.1\sim 0.1 light days in the rest frame. We find that most objects have accretion disk sizes consistent with the prediction of the standard thin disk model when we take disk variability into account. We have also simulated the expected yield of accretion disk measurements under various observational scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find that the number of disk measurements would increase significantly if the default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure

    Implications of the Muon Anomalous Magnetic Moment for Supersymmetry

    Get PDF
    We re-examine the bounds on supersymmetric particle masses in light of the E821 data on the muon anomalous magnetic moment. We confirm, extend and supersede previous bounds. In particular we find (at one sigma) no lower limit on tan(beta) or upper limit on the chargino mass implied by the data at present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at least one sparticle must be lighter than 345 to 440 GeV. However, the E821 central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV. For tan(beta) < 10, the data indicates a high probability for direct discovery of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde
    corecore