We engineer compact SU(5) Grand Unified Theories in F-theory in which
GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge
field is flat, these models avoid the high scale threshold corrections
associated with hypercharge flux. Along the way, we exemplify the
`local-to-global' approach in F-theory model building and demonstrate how the
Tate divisor formalism can be used to address several challenges of extending
local models to global ones. These include in particular the construction of
G-fluxes that extend non-inherited bundles and the engineering of U(1)
symmetries. We go beyond chirality computations and determine the precise
(charged) massless spectrum, finding exactly three families of quarks and
leptons but excessive doublet and/or triplet pairs in the Higgs sector
(depending on the example) and vector-like exotics descending from the adjoint
of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector
without an obvious symmetry to protect them may shed light on new solutions to
the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor
correction