114 research outputs found
Remission and Relapse of Dyslipidemia After Vertical Sleeve Gastrectomy vs Roux-en-Y Gastric Bypass in a Racially and Ethnically Diverse Population.
IMPORTANCE: The comparative effectiveness of the most common operations in the long-term management of dyslipidemia is not clear.
OBJECTIVE: To compare 4-year outcomes associated with vertical sleeve gastrectomy (VSG) vs Roux-en-Y gastric bypass (RYGB) for remission and relapse of dyslipidemia.
DESIGN, SETTING, AND PARTICIPANTS: This retrospective comparative effectiveness study was conducted from January 1, 2009, to December 31, 2016, with follow-up until December 31, 2018. Participants included patients with dyslipidemia at the time of surgery who underwent VSG (4142 patients) or RYGB (2853 patients). Patients were part of a large integrated health care system in Southern California. Analysis was conducted from January 1, 2018, to December 31, 2021.
EXPOSURES: RYGB and VSG.
MAIN OUTCOMES AND MEASURES: Dyslipidemia remission and relapse were assessed in each year of follow-up for as long as 4 years after surgery.
RESULTS: A total of 8265 patients were included, with a mean (SD) age of 46 (11) years; 6591 (79.8%) were women, 3545 (42.9%) were Hispanic, 1468 (17.8%) were non-Hispanic Black, 2985 (36.1%) were non-Hispanic White, 267 (3.2%) were of other non-Hispanic race, and the mean (SD) body mass index (calculated as weight in kilograms divided by height in meters squared) was 44 (7) at the time of surgery. Dyslipidemia outcomes at 4 years were ascertained for 2168 patients (75.9%) undergoing RYGB and 3999 (73.9%) undergoing VSG. Remission was significantly higher for those who underwent RYGB (824 [38.0%]) compared with VSG (1120 [28.0%]) (difference in the probability of remission, 0.10; 95% CI, 0.01-0.19), with no differences in relapse (455 [21.0%] vs 960 [24.0%]). Without accounting for relapse, remission of dyslipidemia after 4 years was 58.9% (1279) for those who underwent RYGB and 51.9% (2079) for those who underwent VSG. Four-year differences between operations were most pronounced for patients 65 years or older (0.39; 95% CI, 0.27-0.51), those with cardiovascular disease (0.43; 95% CI, 0.24-0.62), or non-Hispanic Black patients (0.13; 95% CI, 0.01-0.25) and White patients (0.13; 95% CI, 0.03-0.22).
CONCLUSIONS AND RELEVANCE: In this large, racially and ethnically diverse cohort of patients who underwent bariatric and metabolic surgery in clinical practices, RYGB was associated with higher rates of dyslipidemia remission after 4 years compared with VSG. However, almost one-quarter of all patients experienced relapse, suggesting that patients should be monitored closely throughout their postoperative course to maximize the benefits of these operations for treatment of dyslipidemia
Construction of a nurse shark (Ginglymostoma cirratum) bacterial artificial chromosome (BAC) library and a preliminary genome survey
BACKGROUND: Sharks are members of the taxonomic class Chondrichthyes, the oldest living jawed vertebrates. Genomic studies of this group, in comparison to representative species in other vertebrate taxa, will allow us to theorize about the fundamental genetic, developmental, and functional characteristics in the common ancestor of all jawed vertebrates. AIMS: In order to obtain mapping and sequencing data for comparative genomics, we constructed a bacterial artificial chromosome (BAC) library for the nurse shark, Ginglymostoma cirratum. RESULTS: The BAC library consists of 313,344 clones with an average insert size of 144 kb, covering ~4.5 × 10(10 )bp and thus providing an 11-fold coverage of the haploid genome. BAC end sequence analyses revealed, in addition to LINEs and SINEs commonly found in other animal and plant genomes, two new groups of nurse shark-specific repetitive elements, NSRE1 and NSRE2 that seem to be major components of the nurse shark genome. Screening the library with single-copy or multi-copy gene probes showed 6–28 primary positive clones per probe of which 50–90% were true positives, demonstrating that the BAC library is representative of the different regions of the nurse shark genome. Furthermore, some BAC clones contained multiple genes, making physical mapping feasible. CONCLUSION: We have constructed a deep-coverage, high-quality, large insert, and publicly available BAC library for a cartilaginous fish. It will be very useful to the scientific community interested in shark genomic structure, comparative genomics, and functional studies. We found two new groups of repetitive elements specific to the nurse shark genome, which may contribute to the architecture and evolution of the nurse shark genome
Recommended from our members
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition
UBVRI Light Curves of 44 Type Ia Supernovae
We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from
1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence
Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The
data set comprises 2190 observations and is the largest homogeneously observed
and reduced sample of SN Ia to date, nearly doubling the number of
well-observed, nearby SN Ia with published multicolor CCD light curves. The
large sample of U-band photometry is a unique addition, with important
connections to SN Ia observed at high redshift. The decline rate of SN Ia
U-band light curves correlates well with the decline rate in other bands, as
does the U-B color at maximum light. However, the U-band peak magnitudes show
an increased dispersion relative to other bands even after accounting for
extinction and decline rate, amounting to an additional ~40% intrinsic scatter
compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication
in the Astronomical Journal. Version with high-res figures and electronic
data at http://astron.berkeley.edu/~saurabh/cfa2snIa
An improved pig reference genome sequence to enable pig genetics and genomics research.
BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs
Molecular Measurable Residual Disease Testing of Blood During AML Cytotoxic Therapy for Early Prediction of Clinical Response
Measurable residual disease (MRD) testing after initial chemotherapy treatment can predict relapse and survival in acute myeloid leukemia (AML). However, it has not been established if repeat molecular or genetic testing during chemotherapy can offer information regarding the chemotherapy sensitivity of the leukemic clone. Blood from 45 adult AML patients at day 1 and 4 of induction (n = 35) or salvage (n = 10) cytotoxic chemotherapy was collected for both quantitative real-time PCR (qPCR) assessment (WT1) and next generation sequencing (>500 × depth) of 49 gene regions recurrently mutated in MDS/AML. The median age of subjects was 62 (23–78); 42% achieved a complete response. WT1 was overexpressed in most patients tested but was uninformative for very early MRD assessment. A median of 4 non-synonymous variants (range 0–7) were detected by DNA sequencing of blood on day 1 of therapy [median variant allele frequency (VAF): 29%]. Only two patients had no variants detectable. All mutations remained detectable in blood on day 4 of intensive chemotherapy and remarkably the ratio of mutated to wild-type sequence was often maintained. This phenomenon was not limited to variants in DNMT3A, TET2, and ASXL1. The kinetics of NPM1 and TP53 variant burden early during chemotherapy appeared to be exceptions and exhibited consistent trends in this cohort. In summary, molecular testing of blood on day 4 of chemotherapy is not predictive of clinical response to cytotoxic induction therapy in AML. The observed stability in variant allele frequency suggests that cytotoxic therapy may have a limited therapeutic index for clones circulating in blood containing these mutations. Further validation is required to confirm the utility of monitoring NPM1 and TP53 kinetics in blood during cytotoxic therapy
Mitochondrial Structure, Function and Dynamics Are Temporally Controlled by c-Myc
Although the c-Myc (Myc) oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS), the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc−/− fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC) are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell
Detailed Analysis of a Contiguous 22-Mb Region of the Maize Genome
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses
Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p
- …