127 research outputs found

    Review of Journal of Cardiovascular Magnetic Resonance 2014

    Get PDF
    There were 102 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2014, which is a 6 % decrease on the 109 articles published in 2013. The quality of the submissions continues to increase. The 2013 JCMR Impact Factor (which is published in June 2014) fell to 4.72 from 5.11 for 2012 (as published in June 2013). The 2013 impact factor means that the JCMR papers that were published in 2011 and 2012 were cited on average 4.72 times in 2013. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal’s impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    Antagonistic Parent-Offspring Co-Adaptation

    Get PDF
    In species across taxa, offspring have means to influence parental investment (PI). PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear.Methodology/Principal Findings In contrast to previous theory that largely uses a static approach to predict how “offspring individuals” and “parental individuals” should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents. Conclusions/Significance We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life

    4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess changes in right heart flow and pulmonary artery hemodynamics in patients with repaired Tetralogy of Fallot (rTOF) we used whole heart, four dimensional (4D) velocity mapping (VM) cardiovascular magnetic resonance (CMR).</p> <p>Methods</p> <p>CMR studies were performed in 11 subjects with rTOF (5M/6F; 20.1 Âą 12.4 years) and 10 normal volunteers (6M/4F; 34.2 Âą 13.4 years) on clinical 1.5T and 3.0T MR scanners. 4D VM-CMR was performed using PC VIPR (Phase Contrast Vastly undersampled Isotropic Projection Reconstruction). Interactive streamline and particle trace visualizations of the superior and inferior vena cava (IVC and SVC, respectively), right atrium (RA), right ventricle (RV), and pulmonary artery (PA) were generated and reviewed by three experienced readers. Main PA net flow, retrograde flow, peak flow, time-to-peak flow, peak acceleration, resistance index and mean wall shear stress were quantified. Differences in flow patterns between the two groups were tested using Fisher's exact test. Differences in quantitative parameters were analyzed with the Kruskal-Wallis rank sum test.</p> <p>Results</p> <p>4D VM-CMR was successfully performed in all volunteers and subjects with TOF. Right heart flow patterns in rTOF subjects were characterized by (a) greater SVC/IVC flow during diastole than systole, (b) increased vortical flow patterns in the RA and in the RV during diastole, and (c) increased helical or vortical flow features in the PA's. Differences in main PA retrograde flow, resistance index, peak flow, time-to-peak flow, peak acceleration and mean wall shear stress were statistically significant.</p> <p>Conclusions</p> <p>Whole heart 4D VM-CMR with PC VIPR enables detection of both normal and abnormal right heart flow patterns, which may allow for comprehensive studies to evaluate interdependencies of post-surgically altered geometries and hemodynamics.</p

    Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently, there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencephalographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However, when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal

    Heart valve disease: investigation by cardiovascular magnetic resonance

    Get PDF
    Cardiovascular magnetic resonance (CMR) has become a valuable investigative tool in many areas of cardiac medicine. Its value in heart valve disease is less well appreciated however, particularly as echocardiography is a powerful and widely available technique in valve disease. This review highlights the added value that CMR can bring in valve disease, complementing echocardiography in many areas, but it has also become the first-line investigation in some, such as pulmonary valve disease and assessing the right ventricle. CMR has many advantages, including the ability to image in any plane, which allows full visualisation of valves and their inflow/outflow tracts, direct measurement of valve area (particularly for stenotic valves), and characterisation of the associated great vessel anatomy (e.g. the aortic root and arch in aortic valve disease). A particular strength is the ability to quantify flow, which allows accurate measurement of regurgitation, cardiac shunt volumes/ratios and differential flow volumes (e.g. left and right pulmonary arteries). Quantification of ventricular volumes and mass is vital for determining the impact of valve disease on the heart, and CMR is the 'Gold standard' for this. Limitations of the technique include partial volume effects due to image slice thickness, and a low ability to identify small, highly mobile objects (such as vegetations) due to the need to acquire images over several cardiac cycles. The review examines the advantages and disadvantages of each imaging aspect in detail, and considers how CMR can be used optimally for each valve lesion

    Sex-Related Effects of an Immune Challenge on Growth and Begging Behavior of Barn Swallow Nestlings

    Get PDF
    Parent-offspring conflicts lead the offspring to evolve reliable signals of individual quality, including parasite burden, which may allow parents to adaptively modulate investment in the progeny. Sex-related variation in offspring reproductive value, however, may entail differential investment in sons and daughters. Here, we experimentally manipulated offspring condition in the barn swallow (Hirundo rustica) by subjecting nestlings to an immune challenge (injection with bacterial lipopolysaccharide, LPS) that simulates a bacterial infection, and assessed the effects on growth, feather quality, expression of morphological (gape coloration) and behavioral (posture) begging displays involved in parent-offspring communication, as well as on food allocation by parents. Compared to sham-injected controls, LPS-treated chicks suffered a depression of body mass and a reduction of palate color saturation. In addition, LPS treatment resulted in lower feather quality, with an increase in the occurrence of fault bars on wing feathers. The color of beak flanges, feather growth and the intensity of postural begging were affected by LPS treatment only in females, suggesting that chicks of either sex are differently susceptible to the immune challenge. However, irrespective of the effects of LPS, parents equally allocated food among control and challenged offspring both under normal food provisioning and after a short period of food deprivation of the chicks. These results indicate that bacterial infection and the associated immune response entail different costs to offspring of either sex, but a decrease in nestling conditions does not affect parental care allocation, possibly because the barn swallow adopts a brood-survival strategy. Finally, we showed that physiological stress induced by pathogens impairs plumage quality, a previously neglected major negative impact of bacterial infection which could severely affect fitness, particularly among long-distance migratory birds

    Are Cuckoos Maximizing Egg Mimicry by Selecting Host Individuals with Better Matching Egg Phenotypes?

    Get PDF
    Background: Avian brood parasites and their hosts are involved in complex offence-defense coevolutionary arms races. The most common pair of reciprocal adaptations in these systems is egg discrimination by hosts and egg mimicry by parasites. As mimicry improves, more advanced host adaptations evolve such as decreased intra- and increased interclutch variation in egg appearance to facilitate detection of parasitic eggs. As interclutch variation increases, parasites able to choose hosts matching best their own egg phenotype should be selected, but this requires that parasites know their own egg phenotype and select host nests correspondingly. Methodology/Principal Findings: We compared egg mimicry of common cuckoo Cuculus canorus eggs in naturally parasitized marsh warbler Acrocephalus palustris nests and their nearest unparasitized conspecific neighbors having similar laying dates and nest-site characteristics. Modeling of avian vision and image analyses revealed no evidence that cuckoos parasitize nests where their eggs better match the host eggs. Cuckoo eggs were as good mimics, in terms of background and spot color, background luminance, spotting pattern and egg size, of host eggs in the nests actually exploited as those in the neighboring unparasitized nests. Conclusions/Significance: We reviewed the evidence for brood parasites selecting better-matching host egg phenotypes from several relevant studies and argue that such selection probably cannot exist in host-parasite systems where hos

    Motor signatures of emotional reactivity in frontotemporal dementia

    Get PDF
    Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases

    Sexually Antagonistic “Zygotic Drive” of the Sex Chromosomes

    Get PDF
    Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic “zygotic drive”, because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic “arms race” between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans
    • …
    corecore