110 research outputs found
Dielectronic Recombination of Ground-State and Metastable Li+ Ions
Dielectronic recombination has been investigated for Delta-n = 1 resonances
of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s
^3S). The ground-state spectrum shows three prominent transitions between 53
and 64 eV, while the metastable spectrum exhibits many transitions with
energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling
calculations with the measured recombination rate coefficient is obtained. The
time dependence of the recombination rate yields a radiative lifetime of 52.2
+- 5.0 s for the 2 ^3S level of Li+.Comment: Submitted to Phys. Rev. A; REVTeX, 4 pages, 3 figure
Interference effects in the photorecombination of argonlike Sc3+ ions: Storage-ring experiment and theory
Absolute total electron-ion recombination rate coefficients of argonlike
Sc3+(3s2 3p6) ions have been measured for relative energies between electrons
and ions ranging from 0 to 45 eV. This energy range comprises all dielectronic
recombination resonances attached to 3p -> 3d and 3p -> 4s excitations. A broad
resonance with an experimental width of 0.89 +- 0.07 eV due to the 3p5 3d2 2F
intermediate state is found at 12.31 +- 0.03 eV with a small experimental
evidence for an asymmetric line shape. From R-Matrix and perturbative
calculations we infer that the asymmetric line shape may not only be due to
quantum mechanical interference between direct and resonant recombination
channels as predicted by Gorczyca et al. [Phys. Rev. A 56, 4742 (1997)], but
may partly also be due to the interaction with an adjacent overlapping DR
resonance of the same symmetry. The overall agreement between theory and
experiment is poor. Differences between our experimental and our theoretical
resonance positions are as large as 1.4 eV. This illustrates the difficulty to
accurately describe the structure of an atomic system with an open 3d-shell
with state-of-the-art theoretical methods. Furthermore, we find that a
relativistic theoretical treatment of the system under study is mandatory since
the existence of experimentally observed strong 3p5 3d2 2D and 3p5 3d 4s 2D
resonances can only be explained when calculations beyond LS-coupling are
carried out.Comment: 11 pages, 7 figures, 3 tables, Phys. Rev. A (in print), see also:
http://www.strz.uni-giessen.de/~k
Multiscale fluctuations in nuclear response
The nuclear collective response is investigated in the framework of a doorway
picture in which the spreading width of the collective motion is described as a
coupling to more and more complex configurations. It is shown that this
coupling induces fluctuations of the observed strength. In the case of a
hierarchy of overlapping decay channels, we observe Ericson fluctuations at
different scales. Methods for extracting these scales and the related lifetimes
are discussed. Finally, we show that the coupling of different states at one
level of complexity to some common decay channels at the next level, may
produce interference-like patterns in the nuclear response. This quantum effect
leads to a new type of fluctuations with a typical width related to the level
spacing.Comment: 34 Latex pages including 6 figures (submitted to Phys. Rev. C
T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs
The yellow fever vaccines (YF-17D-204 and 17DD) are considered to be among the safest vaccines and the presence of neutralizing antibodies is correlated with protection, although other immune effector mechanisms are known to be involved. T-cell responses are known to play an important role modulating antibody production and the killing of infected cells. However, little is known about the repertoire of T-cell responses elicited by the YF-17DD vaccine in humans. In this report, a library of 653 partially overlapping 15-mer peptides covering the envelope (Env) and nonstructural (NS) proteins 1 to 5 of the vaccine was utilized to perform a comprehensive analysis of the virus-specific CD4+ and CD8+ T-cell responses. The T-cell responses were screened ex-vivo by IFN-γ ELISPOT assays using blood samples from 220 YF-17DD vaccinees collected two months to four years after immunization. Each peptide was tested in 75 to 208 separate individuals of the cohort. The screening identified sixteen immunodominant antigens that elicited activation of circulating memory T-cells in 10% to 33% of the individuals. Biochemical in-vitro binding assays and immunogenetic and immunogenicity studies indicated that each of the sixteen immunogenic 15-mer peptides contained two or more partially overlapping epitopes that could bind with high affinity to molecules of different HLAs. The prevalence of the immunogenicity of a peptide in the cohort was correlated with the diversity of HLA-II alleles that they could bind. These findings suggest that overlapping of HLA binding motifs within a peptide enhances its T-cell immunogenicity and the prevalence of the response in the population. In summary, the results suggests that in addition to factors of the innate immunity, "promiscuous" T-cell antigens might contribute to the high efficacy of the yellow fever vaccines. © 2013 de Melo et al
Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction
Intra-operative imaging techniques for obtaining the shape and morphology of soft-tissue surfaces in vivo are a key enabling technology for advanced surgical systems. Different optical techniques for 3-D surface reconstruction in laparoscopy have been proposed, however, so far no quantitative and comparative validation has been performed. Furthermore, robustness of the methods to clinically important factors like smoke or bleeding has not yet been assessed. To address these issues, we have formed a joint international initiative with the aim of validating different state-of-the-art passive and active reconstruction methods in a comparative manner. In this comprehensive in vitro study, we investigated reconstruction accuracy using different organs with various shape and texture and also tested reconstruction robustness with respect to a number of factors like the pose of the endoscope as well as the amount of blood or smoke present in the scene. The study suggests complementary advantages of the different techniques with respect to accuracy, robustness, point density, hardware complexity and computation time. While reconstruction accuracy under ideal conditions was generally high, robustness is a remaining issue to be addressed. Future work should include sensor fusion and in vivo validation studies in a specific clinical context. To trigger further research in surface reconstruction, stereoscopic data of the study will be made publically available at www.open-CAS.com upon publication of the paper
Super-Radiant Dynamics, Doorways, and Resonances in Nuclei and Other Open Mesoscopic Systems
The phenomenon of super-radiance (Dicke effect, coherent spontaneous
radiation by a gas of atoms coupled through the common radiation field) is well
known in quantum optics. The review discusses similar physics that emerges in
open and marginally stable quantum many-body systems. In the presence of open
decay channels, the intrinsic states are coupled through the continuum. At
sufficiently strong continuum coupling, the spectrum of resonances undergoes
the restructuring with segregation of very broad super-radiant states and
trapping of remaining long-lived compound states. The appropriate formalism
describing this phenomenon is based on the Feshbach projection method and
effective non-Hermitian Hamiltonian. A broader generalization is related to the
idea of doorway states connecting quantum states of different structure. The
method is explained in detail and the examples of applications are given to
nuclear, atomic and particle physics. The interrelation of the collective
dynamics through continuum and possible intrinsic many-body chaos is studied,
including universal mesoscopic conductance fluctuations. The theory serves as a
natural framework for general description of a quantum signal transmission
through an open mesoscopic system.Comment: 85 pages, 10 figure
Polyethylene thickness is a risk factor for wear necessitating insert exchange
PURPOSE: The aim of this observational study was to investigate the optimal minimal polyethylene (PE) thickness in total knee arthroplasty (TKA) and identify other risk factors associated with revision of the insert due to wear. METHODS: A total of 84 TKA were followed for 11-16 years. All patients received the same prosthesis design (Interax; Howmedica/ Stryker) with halfbearings: separate PE-inserts medially and laterally. Statistical analysis comprised Cox-regression to correct for confounding. RESULTS: Eight knees (9.5%) had been revised due to thinning inserts and an additional patient is scheduled for revision. PE thickness, diagnosis, BMI and weight are risk factors for insert exchange. For each millimetre decrease in PE thickness, the risk of insert exchange increases 3.0 times, which remains after correction for age, gender, weight, diagnosis and femoral-tibial angle. Insert exchange was 4.73 times more likely in OA-patients compared to RA-patients. For every unit increase in BMI and weight the risk for insert exchange increases 1.40 times and 1.14 times, respectively. CONCLUSIONS: In conclusion we therefore advise against the use of thin PE inserts in modular TKA and recommend PE inserts with a minimal 8-mm thickness.Optimising joint reconstruction management in arthritis and bone tumour patient
Metal on metal hip resurfacing versus uncemented custom total hip replacement - early results
<p>Abstract</p> <p>Introduction</p> <p>There is no current consensus on the most appropriate prosthesis for treating symptomatic osteoarthritis (OA) of the hip in young, active patients. Modern metal on metal hip resurfacing arthroplasty (HR) has gained popularity as it is theoretically more stable, bone conserving and easier to revise than total hip arthroplasty. Early results of metal on metal resurfacing have been encouraging. We have compared two well matched cohorts of patients with regard to function, pain relief and patient satisfaction.</p> <p>Methods</p> <p>This prospective study compares 2 cohorts of young, active patients treated with hip resurfacing (137 patients, 141 hips) and custom uncemented (CADCAM) stems (134 patients, 141 hips). All procedures were performed by a single surgeon. Outcome measures included Oxford, WOMAC and Harris hip scores as well as an activity score. Statistical analysis was performed using the unpaired student's t-test.</p> <p>Results</p> <p>One hundred and thirty four and 137 patients were included in the hip replacement and resurfacing groups respectively. The mean age of these patients was 54.6 years. The mean duration of follow up for the hip resurfacing group was 19.2 months compared to 13.4 months for the total hip replacement group.</p> <p>Pre operative oxford, Harris and WOMAC scores in the THA group were 41.1, 46.4 and 50.9 respectively while the post operative scores were 14.8, 95.8 and 5.0. In the HR group, pre- operative scores were 37.0, 54.1 and 45.9 respectively compared to 15.0, 96.8 and 6.1 post operatively. The degree of improvement was similar in both groups.</p> <p>Conclusion</p> <p>There was no significant clinical difference between the patients treated with hip resurfacing and total hip arthroplasty in the short term.</p
Positive nasal culture of methicillin-resistant Staphylococcus aureus (MRSA) is a risk factor for surgical site infection in orthopedics
Background Although nasal carriage of MRSA has been identified as one of the risk factors for surgical site infection (SSI) with MRSA, there have been no reports of this in the orthopedics field
LEGEND-1000 Preconceptual Design Report
We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the Ge half-life of years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time
- …