55 research outputs found

    The Non-Legume Parasponia andersonii Mediates the Fitness of Nitrogen-Fixing Rhizobial Symbionts Under High Nitrogen Conditions

    Get PDF
    Organisms rely on symbiotic associations for metabolism, protection, and energy. However, these intimate partnerships can be vulnerable to exploitation. What prevents microbial mutualists from parasitizing their hosts? In legumes, there is evidence that hosts have evolved sophisticated mechanisms to manage their symbiotic rhizobia, but the generality and evolutionary origins of these control mechanisms are under debate. Here, we focused on the symbiosis between Parasponia hosts and N2-fixing rhizobium bacteria. Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis and thus provides an evolutionary replicate to test how rhizobial exploitation is controlled. A key question is whether Parasponia hosts can prevent colonization of rhizobia under high nitrogen conditions, when the contribution of the symbiont becomes nonessential. We grew Parasponia andersonii inoculated with Bradyrhizobium elkanii under four ammonium nitrate concentrations in a controlled growth chamber. We measured shoot and root dry weight, nodule number, nodule fresh weight, nodule volume. To quantify viable rhizobial populations in planta, we crushed nodules and determined colony forming units (CFU), as a rhizobia fitness proxy. We show that, like legumes and actinorhizal plants, P. andersonii is able to control nodule symbiosis in response to exogenous nitrogen. While the relative host growth benefits of inoculation decreased with nitrogen fertilization, our highest ammonium nitrate concentration (3.75 mM) was sufficient to prevent nodule formation on inoculated roots. Rhizobial populations were highest in nitrogen free medium. While we do not yet know the mechanism, our results suggest that control mechanisms over rhizobia are not exclusive to the legume clade.</p

    Herbivory reduces plant interactions with above- and belowground antagonists and mutualists.

    Get PDF
    Herbivores affect plants through direct effects, such as tissue damage, and through indirect effects that alter species interactions. Interactions may be positive or negative, so indirect effects have the potential to enhance or lessen the net impacts of herbivores. Despite the ubiquity of these interactions, the indirect pathways are considerably less understood than the direct effects of herbivores, and multiple indirect pathways are rarely studied simultaneously. We placed herbivore effects in a comprehensive community context by studying how herbivory influences plant interactions with antagonists and mutualists both aboveground and belowground. We manipulated early-season aboveground herbivore damage to Cucumis sativus (cucumber, Cucurbitaceae) and measured interactions with subsequent aboveground herbivores, root-feeding herbivores, pollinators, and arbuscular mycorrhizal fungi (AMF). We quantified plant growth and reproduction and used an enhanced pollination treatment to determine if plants were pollen limited. Increased herbivory reduced interactions with both antagonists and mutualists. Plants with high levels of early herbivory were significantly less likely to suffer leaf damage later in the summer and tended to be less attacked by root herbivores. Herbivory also reduced pollinator visitation, likely due to fewer and smaller flowers, and reduced AMF colonization. The net effect of herbivory on plant growth and reproduction was strongly negative, but lower fruit and seed production were not due to reduced pollinator visits, because reproduction was not pollen limited. Although herbivores influenced interactions between plants and other organisms, these effects appear to be weaker than the direct negative effects of early-season tissue loss. © 2012 by the Ecological Society of America

    «Через край із серця рідне слово ллється…» (про мову поезій П. Куліша)

    Get PDF
    Several studies have shown that soil biotic communities from organically managed fields are more diverse and exhibit higher activity levels compared to conventionally managed fields. The impact of these different soil communities on plant productivity and the provision of soil ecosystem services are, however, still unclear. Here, we test the effects of soil inoculation from each of three organic and three conventional maize fields on maize productivity and nutrient loss during leaching events induced by simulated rain. In particular, we examine whether differences in productivity and nutrient loss are related to the abundance and species composition of arbuscular mycorrhizal (AM) fungi. We hypothesized that soil biota from organically managed fields would improve maize growth and reduce nutrient leaching significantly more than those from conventionally managed fields. In contrast to our hypothesis, we found that plant productivity was negatively affected by soil inoculation, and this effect was stronger with inoculum from organic fields. Plant productivity was inversely correlated with AMF abundance, suggesting that enhanced carbon allocation to AMF is at least in part responsible for plant growth reduction under our experimental conditions. However, soil inoculation did alter the ecological functioning of the system by reducing phosphorus leaching losses after simulated rain. Moreover, these leaching losses were lower with increased hyphal density and were related with abundance of particular AMF types, suggesting that abundance of AMF and their community composition may be useful indicators of phosphorus leaching losses. The results demonstrate that soil communities from different agricultural fields vary in their impact on plant productivity and nutrient leaching losses. The results further indicate that there is a potential tradeoff between positive effects of soil communities on sustainability and negative effects on crop productivity. © 2011 The Author(s)

    Mycorrhizal mycelium as a global carbon pool

    Get PDF
    For more than 400 million years, mycorrhizal fungi and plants have formed partnerships that are crucial to the emergence and functioning of global ecosystems. The importance of these symbiotic fungi for plant nutrition is well established. However, the role of mycorrhizal fungi in transporting carbon into soil systems on a global scale remains under-explored. This is surprising given that ∼75% of terrestrial carbon is stored belowground and mycorrhizal fungi are stationed at a key entry point of carbon into soil food webs. Here, we analyze nearly 200 datasets to provide the first global quantitative estimates of carbon allocation from plants to the mycelium of mycorrhizal fungi. We estimate that global plant communities allocate 3.93 Gt CO2e per year to arbuscular mycorrhizal fungi, 9.07 Gt CO2e per year to ectomycorrhizal fungi, and 0.12 Gt CO2e per year to ericoid mycorrhizal fungi. Based on this estimate, 13.12 Gt of CO2e fixed by terrestrial plants is, at least temporarily, allocated to the underground mycelium of mycorrhizal fungi per year, equating to ∼36% of current annual CO2 emissions from fossil fuels. We explore the mechanisms by which mycorrhizal fungi affect soil carbon pools and identify approaches to increase our understanding of global carbon fluxes via plant–fungal pathways. Our estimates, although based on the best available evidence, are imperfect and should be interpreted with caution. Nonetheless, our estimations are conservative, and we argue that this work confirms the significant contribution made by mycorrhizal associations to global carbon dynamics. Our findings should motivate their inclusion both within global climate and carbon cycling models, and within conservation policy and practice

    PHYMYCO-DB: A curated database for analyses of fungal diversity and evolution.

    Get PDF
    International audienceBackground: In environmental sequencing studies, fungi can be identified based on nucleic acid sequences, using either highly variable sequences as species barcodes or conserved sequences containing a high-quality phylogenetic signal. For the latter, identification relies on phylogenetic analyses and the adoption of the phylogenetic species concept. Such analysis requires that the reference sequences are well identified and deposited in public-access databases. However, many entries in the public sequence databases are problematic in terms of quality and reliability and these data require screening to ensure correct phylogenetic interpretation. Methods and Principal Findings: To facilitate phylogenetic inferences and phylogenetic assignment, we introduce a fungal sequence database. The database PHYMYCO-DB comprises fungal sequences from GenBank that have been filtered to satisfy stringent sequence quality criteria. For the first release, two widely used molecular taxonomic markers were chosen: the nuclear SSU rRNA and EF1-a gene sequences. Following the automatic extraction and filtration, a manual curation is performed to remove problematic sequences while preserving relevant sequences useful for phylogenetic studies. As a result of curation, ,20% of the automatically filtered sequences have been removed from the database. To demonstrate how PHYMYCO-DB can be employed, we test a set of environmental Chytridiomycota sequences obtained from deep sea samples. Conclusion: PHYMYCO-DB offers the tools necessary to: (i) extract high quality fungal sequences for each of the 5 fungal phyla, at all taxonomic levels, (ii) extract already performed alignments, to act as 'reference alignments', (iii) launch alignments of personal sequences along with stored data. A total of 9120 SSU rRNA and 672 EF1-a high-quality fungal sequences are now available. The PHYMYCO-DB is accessible through the URL http://phymycodb.genouest.org/

    Inclusive fitness in agriculture

    No full text
    Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions

    Evolving new organisms via symbiosis

    No full text

    Evolution: Welcome to Symbiont Prison

    No full text
    Can egalitarian partnerships exist in nature? A new study demonstrates how protist hosts use and abuse their algal symbionts depending on their needs. While this relationship allows protists to survive in low nutrient conditions, it leaves little room for algal retaliation

    A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits

    No full text
    Statistical models of ecosystem functioning based on species traits are valuable tools for predicting how nutrient cycling will respond to global change. However, species such as arbuscular mycorrhizal fungi (AMF) have evolved high intraspecific trait variation, making trait characterization and inclusion in functional trait models difficult. We present a five-part framework based on experimental designs from the phenotypic plasticity literature to quantify AMF intraspecific trait variation in a nutrient cycling context. Framework experiments involve exposing AMF replicates to different environmental conditions and recording trait values to quantify the (i) degree of variation, (ii) reversibility of traits, (iii) relationships among traits, (iv) adaptive nature of traits and (v) potential for trait variation to evolve. We include a phenotypic trajectory analysis of a simulated data set to illustrate relationships among traits. To focus future research, we provide a synthesis of AMF traits whose evolution is particularly relevant to nutrient cycling and environmental factors that induce variation in those traits. Synthesis. Characterizing the depth and range of arbuscular mycorrhizal fungal trait variation is essential for predicting responses to natural and anthropogenic environmental changes, as well as understanding past and future fungal trait evolutionary trajectories in the Tree of Life. Characterizing the depth and range of arbuscular mycorrhizal fungal trait variation is essential for predicting responses to natural and anthropogenic environmental changes, as well as understanding past and future fungal trait evolutionary trajectories in the Tree of Life. Here, we present an experimental framework for characterizing arbuscular mycorrhizal fungal trait variation. © 2014 British Ecological Society
    corecore