21 research outputs found
Charge transfer in steam purified arc discharge single walled carbon nanotubes filled with lutetium halides
Altres ajuts: we also acknowledge financial support from the Czech science foundation (20-08633X), MEYS project (LTC18039). The authors also acknowledge the assistance provided by the Research Infrastructures Nano-EnviCz (Project No. LM2015073) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the project Pro-NanoEnviCz (Reg. No. CZ.02.1.01/0.0/0.0/ 16_013/0001821) supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investments Funds in the frame of Operational Programme Research Development and Education.In the present work, the effect of doping on electronic properties in bulk purified and filled arc-discharge single-walled carbon nanotubes samples is studied for the first time by in situ Raman spectroelectrochemical method. A major challenge to turn the potential of SWCNTs into customer applications is to reduce or eliminate their contaminants by means of purification techniques. Besides, the endohedral functionalization of SWCNTs with organic and inorganic materials (i.e. metal halides) allows the development of tailored functional hybrids. Here, we report the purification and endohedral functionalization of SWCNTs with doping affecting the SWCNTs. Steam-purified SWCNTs have been filled with selected lutetium(iii) halides, LuCl, LuBr, LuI, and sealed using high-temperature treatment, yielding closed-ended SWCNTs with the filling material confined in the inner cavity. The purified SWCNTs were studied using TGA, EDX, STEM and Raman spectroscopy. The lutetium(iii) halide-filled SWCNTs (LuX@SWCNTs) were characterized using STEM, EDX, Raman spectroscopy and in situ Raman spectroelectrochemistry. It was found that there is a charge transfer between the SWCNTs and the encapsulated LuX (X = Cl, Br, I). The obtained data testify to the acceptor doping effect of lutetium(iii) halides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to the introduced substances
Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy
Spinato, Cinzia et al.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the
targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization.
Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues
(i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with
the filling material confined in the inner cavity. The external functionalization of these filled CNTs was
then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody
(Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells.
The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary
antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry,
confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized
CNTs can internalize more efficiently in EGFR positive cancer cells.The research leading to these results has received funding
from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013/
under REA grant agreement no 290023 (RADDEL). This work
was partly supported by the Centre National de la Recherche
Scientifique (CNRS), by the Agence Nationale de la Recherche (ANR) through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC) and by the International Center for Frontier Research in Chemistry (icFRC). ICN2 acknowledges support from the Severo Ochoa Program
(MINECO, Grant SEV-2013-0295). KCL acknowledges support from WCR. The authors are grateful to Thomas Swan & Co. Ltd
for providing Elicarb® SWCNTs. MM, MK and EP work has
been done as a part of PhD program in Materials Sciences
at UAB.Peer reviewe
Filling Single-Walled Carbon Nanotubes with Lutetium Chloride : A Sustainable Production of Nanocapsules Free of Nonencapsulated Material
Filled carbon nanotubes are of interest for a wide variety of applications ranging from sensors to magnetoelectronic devices and going through the development of smart contrast and therapeutic agents in the biomedical field. In general, regardless of the method employed, bulk filling of carbon nanotubes results in the presence of a large amount of external nonencapsulated material. Therefore, further processing is needed to achieve a sample in which the selected payload is present only in the inner cavities of the nanotubes. Here, we report on a straightforward approach that allows the removal of nonencapsulated compounds in a time efficient and environmentally friendly manner, using water as a "green" solvent, while minimizing the residual waste. The results presented herein pave the way toward the production of large amounts of high-quality closed-ended filled nanotubes, also referred to as carbon nanocapsules, readily utilizable in the foreseen applications
Effect of steam-treatment time on the length and structure of single-walled and double-walled carbon nanotubes
A major challenge to turn the potential of carbon nanotubes (CNTs) into customer applications is to reduce or eliminate their toxicity. Taking into account health and safety concerns, intensified research efforts have been conducted to improve the biocompatibility of CNTs, including the development of new shortening and purification strategies. Ideally, the methods used for improving the biocompatibility of CNTs should not alter the electronic properties of CNTs. Herein, we report on the shortening of a sample containing single-walled and double-walled CNTs using steam and obtain new insights in the properties of the steam-treated CNTs. The present study shows that short CNTs (median length ca. 200 nm) can be obtained under the reported conditions. Raman analysis reveals that wider and outer nanotubes undergo more significant changes than the narrower and inner ones, especially after a prolonged steam treatment
Identificación de plagas de chapulín en el norte–centro de México
Short carbon nanotubes (CNTs) are desired for a variety of applications. As a consequence, several strategies have been reported to cut and shorten the length of as-produced CNTs via chemical and physical routes. The efficiency of a given strategy largely depends on the physico-chemical characteristics of the CNTs employed. In order to be able to directly compare the advantages and disadvantages of commonly used protocols, a single batch of chemical vapor deposition single-walled CNTs (SWCNTs) and a batch of multi-walled CNTs (MWCNTs) were subjected to four cutting/shortening strategies, namely acid cutting, piranha treatment, steam shortening and ball milling. The length distribution was assessed by means of scanning electron microscopy. Sample purity and CNT wall structure were determined by Raman spectroscopy, thermogravimetric analysis and magnetic measurements. Within the employed experimental conditions, piranha treatment turned out to be the most efficient to achieve short SWCNTs with a narrow length distribution in a good yield, whereas a mixture of sulfuric/nitric acid was preferred in the case of MWCNTs. A subsequent short steam treatment allowed to remove functional groups present in the samples, leading to median length distributions of 266 nm and 225 nm for SWCNTs and MWCNTs respectively after the combined protocols
Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy
In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells
Development of carbon nanocapsules for biomedical applications
La alta superficie y el hueco interior de los nanotubos de carbono (del inglés CNTs) los convierte en candidatos ideales para el desarrollo de nanovectores inteligentes para su aplicación en nanomedicina. Su cavidad interna puede emplearse para alojar compuestos seleccionados para propósitos de diagnóstico o terapéuticos, mientras que las paredes externas pueden modificarse para aumentar su biocompatibilidad e incluso para su direccionamiento. Un reto importante para trasladar los sistemas basados en CNT a su uso clínico es la reducción o eliminación de su toxicidad. Teniendo en cuenta la preocupación sobre salud y seguridad de nanomateriales, se han intensificado los esfuerzos de investigación para mejorar la biocompatibilidad de los CNTs, incluyendo el desarrollo de nuevas estrategias para el acortamiento y purificación de los mismos.
La primera parte de esta tesis se enfoca en el estudio de la influencia del vapor de agua sobre la longitud, pureza y la integridad de las paredes de los nanotubos de carbono monocapa (del inglés SWCNTs) producidos tanto por deposición catalítica en fase de vapor (del inglés CVD ) como por descarga de arco. Para obtener nanotubos de carbono individualizados desarrollamos un protocolo que consiste en dispersar las muestras en orto-diclorobenceno y hemos empleado microscopía electrónica de barrido para adquirir las imágenes. CVD CNTs cortos con una longitud media de aprox. 200 nm se obtienen después de 10 h de tratamiento con vapor de agua, mientras que los CNT sintetizados por descarga de arco muestran una baja reactividad frente el vapor de agua. También se investigó la eficiencia de otros métodos de acortamiento comúnmente empleados, como son la molienda de bolas, una mezcla de ácido sulfúrico/nítrico y el tratamiento con piraña, tanto para SWCNTs como para CNTs multicapa (del inglés MWCNT) producidos por CVD. La combinación de piraña y vapor de agua resultó ser la más eficiente para el acortamiento de SWCNTs, y la combinación de ácido sulfúrico/nítrico con vapor de agua para MWCNTs. Estos protocolos proporcionan un buen equilibrio entre la obtención de nanotubos cortos con una distribución de longitud pequeña y la pureza de las muestras con un alto rendimiento de producción.
En la segunda parte, estudiamos la encapsulación de distintos haluros metálicos, de interés tanto para imagen como para terapia, dentro de SWCNTs preparados por CVD y por descarga de arco. Se ha investigado el papel que juega la temperatura de calientamiento en el grado de cierre de las puntas de los nanotubos de carbono. Este estudio ha permitido la preparación de CNTs llenos con haluros metálicos de forma eficiente. El llenado de nanotubos de carbono da lugar a muestras que contienen una gran cantidad de material no encapsulado, externo a los nanotubos de carbono, que puede afectar e incluso dominar las propiedades de los nanotubos de carbono llenos. Por lo tanto, desarrollamos un protocolo que permite la eliminación de compuestos no encapsulados en poco tiempo y respetuoso con el medio ambiente, utilizando agua como solvente "verde" en un sistema Soxhlet, a la vez que se minimiza la cantidad de agua residual.
La última parte de la tesis describe la modificación de las paredes externas de CNTs llenos. SWCNTs se han funcionalizado covalentemente a través de las reacciones de Tour y Prato, la primera resultando en un grado de funcionalización mayor. Para completar el estudio, las paredes externas de MWCNT llenos con cloruro de lutecio fueron decoradas con nanopartículas de oro. Estas nanocápsulas híbridas tienen interés para su uso como agentes duales para el diagnóstico y la terapia.
En resumen, esta tesis aporta nuevos conocimientos sobre la preparación de nanocápsulas de carbono, para el desarrollo de la siguiente generación de agentes teranósticos.The high surface area and hollow core of carbon nanotubes (CNTs) make them ideal candidates for the development of smart nanovectors in nanomedicine. Their inner cavity can be employed to host selected payloads for either diagnosis or therapeutic purposes while the external walls can be modified to increase their biocompatibility and even for targeting purposes. A major challenge to turn the potential of CNT based devices into customer applications is to reduce or eliminate their toxicity. Taking into account health and safety concerns, intensified research efforts are conducted to improve the biocompatibility of CNTs, including the development of new shortening and purification strategies.
The first part of this thesis focused on the influence of steam on the length, purity, and sidewall integrity of chemical vapor deposition (CVD) and arc discharge single-walled carbon nanotubes (SWCNTs). In order to obtain individualized carbon nanotubes we developed a protocol that consisted of dispersing the samples in ortho-dichlorobenzene and employed scanning electron microscopy (SEM) to acquire the images. Short CVD CNTs with median length of ca. 200 nm can be obtained after 10 h of steam treatment, whereas arc discharged CNTs show low reactivity towards steam. The efficiency of other commonly employed shortening methods, namely ball milling, sulfuric/nitric acids, and piranha was also investigated for both SWCNT and multi-walled CNTs (MWCNTs) grown by CVD. A combination of piranha and steam turned out to be the most efficient for SWCNTs, and a combined sulfuric/nitric acids and steam for MWCNTs. These protocols provide a good balance between length distribution, sidewall integrity and purity of samples with a high yield of production.
In the second part, we report on the encapsulation of selected metal halides, of interest for both imaging and therapy, inside CVD and arc discharge SWCNTs. The role of temperature on the degree of end-closing has been investigated, which has allowed the preparation of closed-ended metal halide filled CNTs. Bulk filling of carbon nanotubes results in samples that contain a large amount of non-encapsulated material, external to the carbon nanotubes, which can affect and even dominate the properties of filled carbon nanotubes. Therefore, we developed a straight forward approach that allows the removal of non-encapsulated compounds in a time efficient and environmentally friendly manner, using water as a “green” solvent in a Soxhlet setup, while minimizing the residual waste.
The last part of the thesis describes the external modification of previously filled CNTs. SWCNTs have been covalently functionalized via Tour and Prato reactions, the former resulting in a higher degree of functionalization. To complete the study, lutetium chloride filled MWCNTs were externally decorated with gold nanoparticles. The developed hybrid nanocapsules hold potential to be employed as dual agents for diagnosis and therapy.
To summarize, this thesis brings new insights in the preparation of carbon nanocapsules, i.e. close-ended filled carbon nanotubes with chosen payloads, for the development of the next generation of theranostic agents
Development of carbon nanocapsules for biomedical applications /
Bibliografia.Premi Extraordinari de Doctorat concedit pels programes de doctorat de la UAB per curs acadèmic 2016-2017La alta superficie y el hueco interior de los nanotubos de carbono (del inglés CNTs) los convierte en candidatos ideales para el desarrollo de nanovectores inteligentes para su aplicación en nanomedicina. Su cavidad interna puede emplearse para alojar compuestos seleccionados para propósitos de diagnóstico o terapéuticos, mientras que las paredes externas pueden modificarse para aumentar su biocompatibilidad e incluso para su direccionamiento. Un reto importante para trasladar los sistemas basados en CNT a su uso clínico es la reducción o eliminación de su toxicidad. Teniendo en cuenta la preocupación sobre salud y seguridad de nanomateriales, se han intensificado los esfuerzos de investigación para mejorar la biocompatibilidad de los CNTs, incluyendo el desarrollo de nuevas estrategias para el acortamiento y purificación de los mismos. La primera parte de esta tesis se enfoca en el estudio de la influencia del vapor de agua sobre la longitud, pureza y la integridad de las paredes de los nanotubos de carbono monocapa (del inglés SWCNTs) producidos tanto por deposición catalítica en fase de vapor (del inglés CVD ) como por descarga de arco. Para obtener nanotubos de carbono individualizados desarrollamos un protocolo que consiste en dispersar las muestras en orto-diclorobenceno y hemos empleado microscopía electrónica de barrido para adquirir las imágenes. CVD CNTs cortos con una longitud media de aprox. 200 nm se obtienen después de 10 h de tratamiento con vapor de agua, mientras que los CNT sintetizados por descarga de arco muestran una baja reactividad frente el vapor de agua. También se investigó la eficiencia de otros métodos de acortamiento comúnmente empleados, como son la molienda de bolas, una mezcla de ácido sulfúrico/nítrico y el tratamiento con piraña, tanto para SWCNTs como para CNTs multicapa (del inglés MWCNT) producidos por CVD. La combinación de piraña y vapor de agua resultó ser la más eficiente para el acortamiento de SWCNTs, y la combinación de ácido sulfúrico/nítrico con vapor de agua para MWCNTs. Estos protocolos proporcionan un buen equilibrio entre la obtención de nanotubos cortos con una distribución de longitud pequeña y la pureza de las muestras con un alto rendimiento de producción. En la segunda parte, estudiamos la encapsulación de distintos haluros metálicos, de interés tanto para imagen como para terapia, dentro de SWCNTs preparados por CVD y por descarga de arco. Se ha investigado el papel que juega la temperatura de calientamiento en el grado de cierre de las puntas de los nanotubos de carbono. Este estudio ha permitido la preparación de CNTs llenos con haluros metálicos de forma eficiente. El llenado de nanotubos de carbono da lugar a muestras que contienen una gran cantidad de material no encapsulado, externo a los nanotubos de carbono, que puede afectar e incluso dominar las propiedades de los nanotubos de carbono llenos. Por lo tanto, desarrollamos un protocolo que permite la eliminación de compuestos no encapsulados en poco tiempo y respetuoso con el medio ambiente, utilizando agua como solvente "verde" en un sistema Soxhlet, a la vez que se minimiza la cantidad de agua residual. La última parte de la tesis describe la modificación de las paredes externas de CNTs llenos. SWCNTs se han funcionalizado covalentemente a través de las reacciones de Tour y Prato, la primera resultando en un grado de funcionalización mayor. Para completar el estudio, las paredes externas de MWCNT llenos con cloruro de lutecio fueron decoradas con nanopartículas de oro. Estas nanocápsulas híbridas tienen interés para su uso como agentes duales para el diagnóstico y la terapia. En resumen, esta tesis aporta nuevos conocimientos sobre la preparación de nanocápsulas de carbono, para el desarrollo de la siguiente generación de agentes teranósticos.The high surface area and hollow core of carbon nanotubes (CNTs) make them ideal candidates for the development of smart nanovectors in nanomedicine. Their inner cavity can be employed to host selected payloads for either diagnosis or therapeutic purposes while the external walls can be modified to increase their biocompatibility and even for targeting purposes. A major challenge to turn the potential of CNT based devices into customer applications is to reduce or eliminate their toxicity. Taking into account health and safety concerns, intensified research efforts are conducted to improve the biocompatibility of CNTs, including the development of new shortening and purification strategies. The first part of this thesis focused on the influence of steam on the length, purity, and sidewall integrity of chemical vapor deposition (CVD) and arc discharge single-walled carbon nanotubes (SWCNTs). In order to obtain individualized carbon nanotubes we developed a protocol that consisted of dispersing the samples in ortho-dichlorobenzene and employed scanning electron microscopy (SEM) to acquire the images. Short CVD CNTs with median length of ca. 200 nm can be obtained after 10 h of steam treatment, whereas arc discharged CNTs show low reactivity towards steam. The efficiency of other commonly employed shortening methods, namely ball milling, sulfuric/nitric acids, and piranha was also investigated for both SWCNT and multi-walled CNTs (MWCNTs) grown by CVD. A combination of piranha and steam turned out to be the most efficient for SWCNTs, and a combined sulfuric/nitric acids and steam for MWCNTs. These protocols provide a good balance between length distribution, sidewall integrity and purity of samples with a high yield of production. In the second part, we report on the encapsulation of selected metal halides, of interest for both imaging and therapy, inside CVD and arc discharge SWCNTs. The role of temperature on the degree of end-closing has been investigated, which has allowed the preparation of closed-ended metal halide filled CNTs. Bulk filling of carbon nanotubes results in samples that contain a large amount of non-encapsulated material, external to the carbon nanotubes, which can affect and even dominate the properties of filled carbon nanotubes. Therefore, we developed a straight forward approach that allows the removal of non-encapsulated compounds in a time efficient and environmentally friendly manner, using water as a "green" solvent in a Soxhlet setup, while minimizing the residual waste. The last part of the thesis describes the external modification of previously filled CNTs. SWCNTs have been covalently functionalized via Tour and Prato reactions, the former resulting in a higher degree of functionalization. To complete the study, lutetium chloride filled MWCNTs were externally decorated with gold nanoparticles. The developed hybrid nanocapsules hold potential to be employed as dual agents for diagnosis and therapy. To summarize, this thesis brings new insights in the preparation of carbon nanocapsules, i.e. close-ended filled carbon nanotubes with chosen payloads, for the development of the next generation of theranostic agents
Determination of the length of single-walled carbon nanotubes by scanning electron microscopy
A methodology is presented to determine the length of well individualized single-walled carbon nanotubes (SWCNTs) by means of scanning electron microscopy (SEM). Accurate measurements on wide areas of the sample can be achieved in an easy, fast and trustworthy manner. We have tested several supports and solvents to optimize the dispersion of SWCNTs, as well as the SEM imaging conditions. The optimal methodology goes via dispersion of the sample in ortho-dichlorobenzene, deposition onto a continuous carbon film supported on a copper TEM grid, and SEM imaging at 2 kV in secondary electrons mode using a through-in-lens detector. • Individualization of SWCNTs is achieved by dispersion of SWCNTs in ortho-dichlorobenzene and deposition onto TEM grids • Individual SWCNTs are imaged by SEM • Length determination by SEM is as precise as AFM Method name: Length determination of carbon nanotubes, Keywords: Dispersion, Length distribution, Shortening, Cutting, Atomic force microscop
Determination of the length of single-walled carbon nanotubes by scanning electron microscopy
A methodology is presented to determine the length of well individualized single-walled carbon nanotubes (SWCNTs) by means of scanning electron microscopy (SEM). Accurate measurements on wide areas of the sample can be achieved in an easy, fast and trustworthy manner. We have tested several supports and solvents to optimize the dispersion of SWCNTs, as well as the SEM imaging conditions. The optimal methodology goes via dispersion of the sample in ortho-dichlorobenzene, deposition onto a continuous carbon film supported on a copper TEM grid, and SEM imaging at 2 kV in secondary electrons mode using a through-in-lens detector. • Individualization of SWCNTs is achieved by dispersion of SWCNTs in ortho-dichlorobenzene and deposition onto TEM grids• Individual SWCNTs are imaged by SEM• Length determination by SEM is as precise as AF