158 research outputs found
PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy.
Spinal muscular atrophy (SMA) is the second most common genetic cause of death in childhood. However, no effective treatment is available to halt disease progression. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene. We previously reported that PTEN depletion leads to an increase in survival of SMN-deficient motor neurons. Here, we aimed to establish the impact of PTEN modulation in an SMA mouse model in vivo. Initial experiments using intramuscular delivery of adeno-associated vector serotype 6 (AAV6) expressing shRNA against PTEN in an established mouse model of severe SMA (SMNΔ7) demonstrated the ability to ameliorate the severity of neuromuscular junction pathology. Subsequently, we developed self-complementary AAV9 expressing siPTEN (scAAV9-siPTEN) to allow evaluation of the effect of systemic suppression of PTEN on the disease course of SMA in vivo. Treatment with a single injection of scAAV9-siPTEN at postnatal day 1 resulted in a modest threefold extension of the lifespan of SMNΔ7 mice, increasing mean survival to 30 days, compared to 10 days in untreated mice. Our data revealed that systemic PTEN depletion is an important disease modifier in SMNΔ7 mice, and therapies aimed at lowering PTEN expression may therefore offer a potential therapeutic strategy for SMA
A Model for Using a Concept Inventory as a Tool for Students' Assessment and Faculty Professional Development
This essay describes how the use of a concept inventory has enhanced professional development and curriculum reform efforts of a faculty teaching community. The Host Pathogen Interactions (HPI) teaching team is composed of research and teaching faculty with expertise in HPI who share the goal of improving the learning experience of students in nine linked undergraduate microbiology courses. To support evidence-based curriculum reform, we administered our HPI Concept Inventory as a pre- and postsurvey to approximately 400 students each year since 2006. The resulting data include student scores as well as their open-ended explanations for distractor choices. The data have enabled us to address curriculum reform goals of 1) reconciling student learning with our expectations, 2) correlating student learning with background variables, 3) understanding student learning across institutions, 4) measuring the effect of teaching techniques on student learning, and 5) demonstrating how our courses collectively form a learning progression. The analysis of the concept inventory data has anchored and deepened the team's discussions of student learning. Reading and discussing students' responses revealed the gap between our understanding and the students' understanding. We provide evidence to support the concept inventory as a tool for assessing student understanding of HPI concepts and faculty development
Annexin A3 in sepsis: novel perspectives from an exploration of public transcriptome data
According to publicly available transcriptome datasets, the abundance of Annexin A3 (ANXA3) is robustly increased during the course of sepsis; however, no studies have examined the biological significance or clinical relevance of ANXA3 in this pathology. Here we explored this interpretation gap and identified possible directions for future research. Based on reference transcriptome datasets, we found that ANXA3 expression is restricted to neutrophils, is upregulatedin vitroafter exposure to plasma obtained from septic patients, and is associated with adverse clinical outcomes. Secondly, an increase in ANXA3 transcript abundance was also observedin vivo, in the blood of septic patients in multiple independent studies. ANXA3 is known to mediate calcium-dependent granules-phagosome fusion in support of microbicidal activity in neutrophils. More recent work has also shown that ANXA3 enhances proliferation and survival of tumour cells via a Caspase-3-dependent mechanism. And this same molecule is also known to play a critical role in regulation of apoptotic events in neutrophils. Thus, we posit that during sepsis ANXA3 might either play a beneficial role, by facilitating microbial clearance and resolution of the infection; or a detrimental role, by prolonging neutrophil survival, which is known to contribute to sepsis-mediated organ damage
Arabic validation of the Compulsive Internet Use Scale (CIUS)
<p>Abstract</p> <p>Background</p> <p>The popularity of using the Internet and related applications has grown in Arabic countries in recent years. Despite numerous advantages in terms of optimizing communications among individuals and social systems, the use of the Internet may in certain cases become problematic and engender negative consequences in daily life. As no instrument in the Arabic language is available, however, to measure excessive Internet use, the goal of the current study was to validate an Arabic version of the Compulsive Internet Use Scale (CIUS).</p> <p>Methods</p> <p>The Arabic version of the CIUS was administered to a sample of 185 Internet users and exploratory and confirmatory analyses performed.</p> <p>Results</p> <p>As found previously for the original version, a one-factor model of the CIUS had good psychometric properties and fit the data well. The total score on the CIUS was positively associated with time spent online.</p> <p>Conclusion</p> <p>The Arabic version of the CIUS seems to be a valid self-report to measure problematic Internet use.</p
Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella tularensis within the Cytosol
Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of ∼21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals
Utility of Survival Motor Neuron ELISA for Spinal Muscular Atrophy Clinical and Preclinical Analyses
Genetic defects leading to the reduction of the survival motor neuron protein (SMN) are a causal factor for Spinal Muscular Atrophy (SMA). While there are a number of therapies under evaluation as potential treatments for SMA, there is a critical lack of a biomarker method for assessing efficacy of therapeutic interventions, particularly those targeting upregulation of SMN protein levels. Towards this end we have engaged in developing an immunoassay capable of accurately measuring SMN protein levels in blood, specifically in peripheral blood mononuclear cells (PBMCs), as a tool for validating SMN protein as a biomarker in SMA.A sandwich enzyme-linked immunosorbent assay (ELISA) was developed and validated for measuring SMN protein in human PBMCs and other cell lysates. Protocols for detection and extraction of SMN from transgenic SMA mouse tissues were also developed.The assay sensitivity for human SMN is 50 pg/mL. Initial analysis reveals that PBMCs yield enough SMN to analyze from blood volumes of less than 1 mL, and SMA Type I patients' PBMCs show ∼90% reduction of SMN protein compared to normal adults. The ELISA can reliably quantify SMN protein in human and mouse PBMCs and muscle, as well as brain, and spinal cord from a mouse model of severe SMA.This SMN ELISA assay enables the reliable, quantitative and rapid measurement of SMN in healthy human and SMA patient PBMCs, muscle and fibroblasts. SMN was also detected in several tissues in a mouse model of SMA, as well as in wildtype mouse tissues. This SMN ELISA has general translational applicability to both preclinical and clinical research efforts
Perinatal Asphyxia Reduces Dentate Granule Cells and Exacerbates Methamphetamine-Induced Hyperlocomotion in Adulthood
Background: Obstetric complications have been regarded as a risk factor for schizophrenia later in life. One of the mechanisms underlying the association is postulated to be a hypoxic process in the brain in the offspring around the time of birth. Hippocampus is one of the brain regions implicated in the late-onset dopaminergic dysfunction associated with hypoxic obstetric complications. Methodology/Principal Findings: We used an animal model of perinatal asphyxia, in which rat pups were exposed to 15 min of intrauterine anoxia during Cesarean section birth. At 6 and 12 weeks after birth, the behavior of the pups was assessed using a methamphetamine-induced locomotion test. In addition, the histopathology of the hippocampus was examined by means of stereology. At 6 weeks, there was no change in the methamphetamine-induced locomotion. However, at 12 weeks of age, we found an elevation in methamphetamine-induced locomotor activity, which was associated with an increase of dopamine release in the nucleus accumbens. At the same age, we also found a reduction of the dentate granule cells of the hippocampus. Conclusions/Significance: These results suggest that the dopaminergic dysregulation after perinatal asphyxia is associated with a reduction in hippocampal dentate granule cells, and this may partly contribute to the pathogenesis of schizophrenia.浜松医科大学学位論文 医博第548号(平成21年3月18日
Two Component Systems: Physiological Effect of a Third Component
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call “third component”) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible
Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector
Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of “metaeffector,” a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein
- …