923 research outputs found

    Photoelectrons in the quiet polar wind

    Full text link
    This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM‐STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day‐night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.Key PointsStudy presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solutionSingle stationary field line solutions under sunlit and dark conditions are presented as is the global solution from ∼1000 moving linesField line motion creates global structure by transporting field lines through different conditions of illumination and Joule heatingPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137691/1/jgra53574.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137691/2/jgra53574_am.pd

    Active current sheets and hot flow anomalies in Mercury's bow shock

    Full text link
    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration and heating as predicted by previous numerical simulations. Together with earlier observations of HFA activity at Earth, Venus and Saturn, our results confirm that hot flow anomalies are a common property of planetary bow shocks, and show that the characteristic size of these events is of the order of one planetary radius.Comment: 39 pages, 15 figures, 2 table

    Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Get PDF
    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored

    Analytic description of the electron temperature behavior in the upper ionosphere and plasmasphere

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95184/1/grl6299.pd

    Characterization of thermal effects in the Enhanced LIGO Input Optics

    Get PDF
    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO

    Impact of Precipitating Electrons and Magnetosphere-Ionosphere Coupling Processes on Ionospheric Conductance

    Get PDF
    Modeling of electrodynamic coupling between the magnetosphere and ionosphere depends on accurate specification of ionospheric conductances produced by auroral electron precipitation. Magnetospheric models determine the plasma properties on magnetic field lines connected to the auroral ionosphere, but the precipitation of energetic particles into the ionosphere is the result of a two step process. The first step is the initiation of electron precipitation into both magnetic conjugate points from Earths plasma sheet via wave-particle interactions. The second step consists of the multiple atmospheric reflections of electrons at the two magnetic conjugate points, which produces secondary superthermal electron fluxes. The steady state solution for the precipitating particle fluxes into the ionosphere differs significantly from that calculated based on the originating magnetospheric population predicted by MHD and ring current kinetic models. Thus, standard techniques for calculating conductances from the mean energy and energy flux of precipitating electrons in model simulations must be modified to account for these additional processes. Here we offer simple parametric relations for calculating Pedersen and Hall height-integrated conductances that include the contributions from superthermal electrons produced by magnetosphere-ionosphere-atmosphere coupling in the auroral regions

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table

    A bounce‐averaged kinetic model of the ring current ion population

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94668/1/grl7966.pd
    corecore