115 research outputs found

    Perancangan dan Pembuatan Trainer-Kit Programmable Logic Control (PLC) untuk Media Pembelajaran Sistem Otomasi Industri (Studi Kasus : Jurusan Teknik Industri UMS)

    Get PDF
    In the current era of globalization, the progress of science and technology is developing very rapidly, where modern equipment was created to simplify and speed up a work process that usually refers to an automatic control system or an automated system. One of the tools commonly used is Programmable Logic Control (PLC). The Industrial Engineering Department of the Muhammadiyah University of Surakarta has an industrial automation course with a PLC control system that has been supported by the LG GLOFA G7M PLC control system which is equipped with a trainer-kit and GMWIN monitor software. But there are some problems when operating the PLC and Software trainer-kit. That is a factor that makes researchers have the idea of designing and making a new PLC trainer-kit with a Reverse Engineering approach that is emphasized at the Benchmarking stage. This research produced a PLC trainer-kit using OMRON CP1E N20DR PLC CPU and Cx-Programmer as the monitor software and the usage module. The new PLC trainer kits (OMRON) are declared to be suitable for use as learning media for industrial automation systems, so that learning activities can run more effectively and efficiently

    Ruthenium promoted cobalt-alumina catalysts for the synthesis of high-molecular-weight solid hydrocarbons from CO and hydrogen

    Get PDF
    The effect of the ruthenium promotion of Fischer–Tropsch (FT) cobalt–alumina catalysts on the temperature of catalyst activation reduction and catalytic properties in the FT process is studied. The addition of 0.2–1 wt % of ruthenium reduces the temperature of reduction activation from 500 to 330–350°C while preserving the catalytic activity and selectivity toward C5+ products in FT synthesis. FT ruthenium-promoted Co–Al catalysts are more selective toward higher hydrocarbons; the experimental value of parameter αASF of the distribution of paraffinic products for ruthenium-promoted catalysts is 0.93–0.94, allowing us to estimate the selectivity toward C20+ synthetic waxes to be 48 wt %, and the selectivity toward C35+ waxes to be 23 wt %. Ruthenium-promoted catalysts also exhibit high selectivity toward olefins

    Identifying the Sources of Ferromagnetism in Sol-Gel Synthesized Zn\u3csub\u3e1-x\u3c/sub\u3eCo\u3csub\u3ex\u3c/sub\u3eO (0 ≤ x ≤ 0.10) Nanoparticles

    Get PDF
    We have carefully investigated the structural, optical and electronic properties and related them with the magnetism of sol-gel synthesized Zn1-xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Samples with x ≤ 0.05 were pure and free of spurious phases, whereas ZnCo2O4 was identified as the impurity phase for samples with x ≥ 0.08. Samples with x \u3c 0.05 were found to be true solid solutions with only high spin Co2+ ions into ZnO structure, whereas sample with x = 0.05, exhibited the presence of high spin Co2+ and low spin Co3+. For the impurity-free samples we found that as Co concentration increases, a and c lattice parameters and Zn–O bond length parallel to the c-axis decrease, the band gap drastically decreases, and the average grain size and distortion degree increases. In all samples there are isolated Co2+ ions that do not interact magnetically at room temperature, bringing about the observed paramagnetic signal, which increases with increasing Co concentration. M vs T curves suggest that some of these disordered Co2+ ions in Zn1−xCoxO are antiferromagnetically coupled. Moreover, we also found that the intensity of the main EPR peak associated to Co2+ varies with the nominal Co content in a similar manner as the saturation magnetizations and coercive fields do. These results point out that the ferromagnetism in these samples should directly be correlated with the presence of Co2+. Bound magnetic polaron model is insufficient to explain the Room temperature ferromagnetism in these Co doped ZnO samples and the charge transfer model seems not influence considerably the FM properties of Zn1-xCoxO nanoparticles. The FM behavior may be originated from a combination of several factors such as the interaction of high spin Co2+ ions, the formation of defect levels close to the valence band edge and grain boundaries effects

    The effect of ruthenium promotion of the Co/d-Al2O3 catalyst on the hydrogen reduction kinetics of cobalt

    No full text
    The effect of ruthenium content on the reductive activation of the Co/δ-Al2O3 catalyst was investigated using thermal analysis and in situ synchrotron radiation X-ray diffraction. Data of thermal analysis and phase transformations can be described by a kinetic scheme consisting of three sequential steps: Co³⁺ → Co²⁺ → (Co⁰Co²⁺) → Co⁰. The first step is the generation of several CoO clusters within one Co3O4 crystallite followed by their further growth obeying the Avrami–Erofeev kinetic equation (An1) with dimensional parameter n1 < 1, which may indicate the diffusion control of the growth. The second step is the kinetically controlled sequential process of the metallic cobalt phase nucleation (An2), which is followed by the third step of slow particle growth limited by mass transport according to the Jander model (D). Ruthenium promotion of Co/δ-Al2O3 catalysts significantly accelerates the reduction of cobalt. As the ruthenium content is raised to 1 wt%, the characteristic temperature of metal phase formation decreases by more than 200 °C and Ea for An2 step decreases by 25%. For step D, a joint decrease in activation energy and pre-exponential factor in case of ruthenium promotion corresponds to a weaker diffusion impediment at the final step of cobalt reduction. In the case of unmodified Co/δ-Al2O3, the characteristic temperature of the metal phase formation reaches very high values, the metallic nuclei rapidly coalesce into larger ones, and the further process is inhibited by diffusion of the reactants through the product layer. For ruthenium promoted catalysts, each CoO crystallite generates one metal crystallite; thus, ruthenium enhances the dispersion of the active component

    EFfect of alumina modification on the structure of cobalt-containing Fischer-Tropsch synthesis catalysts according to internal-field 59Co NMR data

    No full text
    International audienceAn internal-field Co-59 NMR study of cobalt-containing Fischer-Tropsch synthesis catalysts supported on different alumina modifications was reported. The Co/delta-Al2O3 sample was shown to contain single-domain fcc packing and stacking faults, whereas Co/gamma-Al2O3 gave signals from the fcc domain walls, hcp and stacking faults, thus indicating differences in the particle size of the studied samples. T-2 relaxation times were measured; their distribution in a spectrum is non-uniform, which allows signals to be distinguished by their relaxation times. Quantitative measurements of the relative atoms content in different packings revealed that the catalysts have mostly a defect structure. A brief historical background was presented to characterize the internal-field Co-59 NMR technique, the related problems, and different approaches to acquired data interpretation

    Ruthenium promoted cobalt-alumina catalysts for the synthesis of high-molecular-weight solid hydrocarbons from CO and hydrogen

    No full text
    The effect of the ruthenium promotion of Fischer–Tropsch (FT) cobalt–alumina catalysts on the temperature of catalyst activation reduction and catalytic properties in the FT process is studied. The addition of 0.2–1 wt % of ruthenium reduces the temperature of reduction activation from 500 to 330–350°C while preserving the catalytic activity and selectivity toward C5+ products in FT synthesis. FT ruthenium-promoted Co–Al catalysts are more selective toward higher hydrocarbons; the experimental value of parameter αASF of the distribution of paraffinic products for ruthenium-promoted catalysts is 0.93–0.94, allowing us to estimate the selectivity toward C20+ synthetic waxes to be 48 wt %, and the selectivity toward C35+ waxes to be 23 wt %. Ruthenium-promoted catalysts also exhibit high selectivity toward olefins

    The effect of ruthenium promotion of the Co/d-Al2O3 catalyst on the hydrogen reduction kinetics of cobalt

    No full text
    The effect of ruthenium content on the reductive activation of the Co/δ-Al2O3 catalyst was investigated using thermal analysis and in situ synchrotron radiation X-ray diffraction. Data of thermal analysis and phase transformations can be described by a kinetic scheme consisting of three sequential steps: Co³⁺ → Co²⁺ → (Co⁰Co²⁺) → Co⁰. The first step is the generation of several CoO clusters within one Co3O4 crystallite followed by their further growth obeying the Avrami–Erofeev kinetic equation (An1) with dimensional parameter n1 < 1, which may indicate the diffusion control of the growth. The second step is the kinetically controlled sequential process of the metallic cobalt phase nucleation (An2), which is followed by the third step of slow particle growth limited by mass transport according to the Jander model (D). Ruthenium promotion of Co/δ-Al2O3 catalysts significantly accelerates the reduction of cobalt. As the ruthenium content is raised to 1 wt%, the characteristic temperature of metal phase formation decreases by more than 200 °C and Ea for An2 step decreases by 25%. For step D, a joint decrease in activation energy and pre-exponential factor in case of ruthenium promotion corresponds to a weaker diffusion impediment at the final step of cobalt reduction. In the case of unmodified Co/δ-Al2O3, the characteristic temperature of the metal phase formation reaches very high values, the metallic nuclei rapidly coalesce into larger ones, and the further process is inhibited by diffusion of the reactants through the product layer. For ruthenium promoted catalysts, each CoO crystallite generates one metal crystallite; thus, ruthenium enhances the dispersion of the active component
    corecore