336 research outputs found

    Enantiomeric Metabolic Interactions and Stereoselective Human Methadone Metabolism

    Full text link

    Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update

    Get PDF
    CYP2D6 and CYP2C19 polymorphisms affect the exposure, efficacy and safety of tricyclic antidepressants (TCAs), with some drugs being affected by CYP2D6 only (e.g., nortriptyline and desipramine) and others by both polymorphic enzymes (e.g., amitriptyline, clomipramine, doxepin, imipramine, and trimipramine). Evidence is presented for CYP2D6 and CYP2C19 genotype-directed dosing of TCAs. This document is an update to the 2012 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants

    Allylic Oxidation of Alkenes Catalyzed by a Copper−Aluminum Mixed Oxide

    Get PDF
    A strategy for the allylic oxidation of cyclic alkenes with a copper−aluminum mixed oxide as catalyst is presented. The reaction involves the treatment of an alkene with a carboxylic acid employing tert-butyl hydroperoxide as the oxidant. In all cases, the corresponding allylic esters are obtained. When L-proline is employed, the allylic alcohol or ketone is obtained. The oxidation of cyclohexene and valencene has been optimized by design of experiments (DoE) statistical methodology

    Contribution of Cytochrome P450 and ABCB1 Genetic Variability on Methadone Pharmacokinetics, Dose Requirements, and Response

    Get PDF
    Although the efficacy of methadone maintenance treatment (MMT) in opioid dependence disorder has been well established, the influence of methadone pharmacokinetics in dose requirement and clinical outcome remains controversial. The aim of this study is to analyze methadone dosage in responder and nonresponder patients considering pharmacogenetic and pharmacokinetic factors that may contribute to dosage adequacy. Opioid dependence patients (meeting Diagnostic and Statistical Manual of Mental Disorders, [4th Edition] criteria) from a MMT community program were recruited. Patients were clinically assessed and blood samples were obtained to determine plasma concentrations of (R,S)-, (R) and (S)- methadone and to study allelic variants of genes encoding CYP3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, and P-glycoprotein. Responders and nonresponders were defined by illicit opioid consumption detected in random urinalysis. The final sample consisted in 105 opioid dependent patients of Caucasian origin. Responder patients received higher doses of methadone and have been included into treatment for a longer period. No differences were found in terms of genotype frequencies between groups. Only CYP2D6 metabolizing phenotype differences were found in outcome status, methadone dose requirements, and plasma concentrations, being higher in the ultrarapid metabolizers. No other differences were found between phenotype and responder status, methadone dose requirements, neither in methadone plasma concentrations. Pharmacokinetic factors could explain some but not all differences in MMT outcome and methadone dose requirements

    Unexpectedly high barriers to M–P rotation in tertiary phobane complexes : PhobPR behavior that is commensurate with tBu2PR

    Get PDF
    The four isomers of 9-butylphosphabicyclo[3.3.1]nonane, s-PhobPBu, where Bu = n-butyl, sec-butyl, isobutyl, tert-butyl, have been prepared. Seven isomers of 9-butylphosphabicyclo[4.2.1]nonane (a5-PhobPBu, where Bu = n-butyl, sec-butyl, isobutyl, tert-butyl; a7-PhobPBu, where Bu = n-butyl, isobutyl, tert-butyl) have been identified in solution; isomerically pure a5-PhobPBu and a7-PhobPBu, where Bu = n-butyl, isobutyl, have been isolated. The σ-donor properties of the PhobPBu ligands have been compared using the JPSe values for the PhobP(═Se)Bu derivatives. The following complexes have been prepared: trans-[PtCl2(s-PhobPR)2] (R = nBu (1a), iBu (1b), sBu (1c), tBu (1d)); trans-[PtCl2(a5-PhobPR)2] (R = nBu (2a), iBu (2b)); trans-[PtCl2(a7-PhobPR)2] (R = nBu (3a), iBu (3b)); trans-[PdCl2(s-PhobPR)2] (R = nBu (4a), iBu (4b)); trans-[PdCl2(a5-PhobPR)2] (R = nBu (5a), iBu (5b)); trans-[PdCl2(a7-PhobPR)2] (R = nBu (6a), iBu (6b)). The crystal structures of 1a–4a and 1b–6b have been determined, and of the ten structures, eight show an anti conformation with respect to the position of the ligand R groups and two show a syn conformation. Solution variable-temperature 31P NMR studies reveal that all of the Pt and Pd complexes are fluxional on the NMR time scale. In each case, two species are present (assigned to be the syn and anti conformers) which interconvert with kinetic barriers in the range 9 to >19 kcal mol–1. The observed trend is that, the greater the bulk, the higher the barrier. The magnitudes of the barriers to M–P bond rotation for the PhobPR complexes are of the same order as those previously reported for tBu2PR complexes. Rotational profiles have been calculated for the model anionic complexes [PhobPR-PdCl3]− using DFT, and these faithfully reproduce the trends seen in the NMR studies of trans-[MCl2(PhobPR)2]. Rotational profiles have also been calculated for [tBu2PR-PdCl3]−, and these show that the greater the bulk of the R group, the lower the rotational barrier: i.e., the opposite of the trend for [PhobPR-PdCl3]−. Calculated structures for the species at the maxima and minima in the M–P rotation energy curves indicate the origin of the restricted rotation. In the case of the PhobPR complexes, it is the rigidity of the bicycle that enforces unfavorable H···Cl clashes involving the Pd–Cl groups with H atoms on the α- or β-carbon in the R substituent and H atoms in 1,3-axial sites within the phosphabicycle

    A Perspective Distilled from Seventy Years of Research

    Full text link
    corecore