4,161 research outputs found
Spin rotation and oscillations for high energy particles in a crystal and possibility to measure the quadrupole moments and tensor polarizabilities of elementary particles and nuclei
It is shown that particle motion in a bent (straight) crystal is accompanied
by particle spin rotation and oscillations that allows to measure the tensor
electric and magnetic polarizabilities of nuclei and elementary particles. It
is shown that channelling of particles in either straight or bent crystal with
the polarized nuclei could be used both to analyze polarization of high energy
particles and polarize them.Comment: reported at RC2005; prepared in the framework of INTAS
Project#03-52-615
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV
We present results for the charged-particle multiplicity distribution at
mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the
PHENIX detector at RHIC. For the 5% most central collisions we find
. The results,
analyzed as a function of centrality, show a steady rise of the particle
density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor
changes to figure labels and text to meet PRL requirements. One author added:
M. Hibino of Waseda Universit
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Nuclear Modification Factors for Hadrons At Forward and Backward Rapidities in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV
We report on charged hadron production in deuteron-gold reactions at
sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 <
eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 <
eta < -1.4, referred to as backward rapidity, and a transverse momentum range
p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold
collision centrality classes. We observe a suppression relative to binary
collision scaling at forward rapidity, sensitive to low momentum fraction (x)
partons in the gold nucleus, and an enhancement at backward rapidity, sensitive
to high momentum fraction partons in the gold nucleus.Comment: 330 authors, 6 pages text, 4 figures, REVTeX4. Published in Physical
Review Letters. Minor changes over previous version in response to referee
and editor comments, plus updating of references. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Particle-species dependent modification of jet-induced correlations in Au+Au collisions at sqrt(s_NN) = 200 GeV
We report PHENIX measurements of the correlation of a trigger hadron at
intermediate transverse momentum (2.5<p_{T,trig}<4 GeV/c), with associated
mesons or baryons at lower p_{T,assoc}, in Au+Au collisions at sqrt(s_NN) = 200
GeV. The jet correlations for both baryons and mesons show similar shape
alterations as a function of centrality, characteristic of strong modification
of the away-side jet. The ratio of jet-associated baryons to mesons for this
jet increases with centrality and p_{T,assoc} and, in the most central
collisions, reaches a value similar to that for inclusive measurements. This
trend is incompatible with in-vacuum fragmentation, but could be due to
jet-like contributions from correlated soft partons which recombine upon
hadronization.Comment: 344 authors, 4 pages text, RevTeX, 4 figures. Submitted to Physical
Review Letters. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
