23 research outputs found

    Magnetosphere–Ionosphere Convection as a Compound System

    Full text link

    The gut microbiome regulates host glucose homeostasis via peripheral serotonin

    Get PDF
    The gut microbiome is an established regulator of aspects of host metabolism, such as glucose handling. Despite the known impacts of the gut microbiota on host glucose homeostasis, the underlying mechanisms are unknown. The gut microbiome is also a potent mediator of gut-derived serotonin synthesis, and this peripheral source of serotonin is itself a regulator of glucose homeostasis. Here, we determined whether the gut microbiome influences glucose homeostasis through effects on gut-derived serotonin. Using both pharmacological inhibition and genetic deletion of gut-derived serotonin synthesis, we find that the improvements in host glucose handling caused by antibiotic-induced changes in microbiota composition are dependent on the synthesis of peripheral serotonin.Alyce M. Martin, Julian M. Yabut, Jocelyn M. Choo, Amanda J. Page, Emily W. Sun, Claire F. Jessup, Steve L. Wesselingh, Waliul I. Khan, Geraint B. Rogers, Gregory R. Steinbergb, and Damien J. Keatin

    Role of TNFR-related 2 mediated immune responses in dextran sulfate sodium-induced inflammatory bowel disease

    No full text
    Previous work has suggested that the LIGHT-TR2 costimulatory pathway plays a role in the acute and chronic stages of dextran sulfate sodium (DSS)-induced colitis [Steinberg et al. (2008); Wang et al. (2005)]. To clarify the role of TNFR-related 2 (TR2) signaling in the maintenance of intestinal homeostasis, we generated a TR2 knock-out (KO) mouse. Using DSS to induce colitis, we compared the colitic symptoms and pathological changes in wild type (WT) and TR2 KO mice, and the production of cytokines by the diseased colons. We also studied the role of TR2 in suppressing innate and adaptive immunity in the DSS model. TR2 deficient mice were characterized by reduced symptoms of intestinal inflammation compared with wildtype mice, and reduced production of cytokines. We therefore generated a monoclonal antibody against mouse TR2 which was specific to TR2 and capable of blocking TR2 signals. With this antibody, we demonstrated that antagonizing TR2 during the development of DSS-induced colitis reduced the symptoms of inflammation. Our findings suggest that TR2 is an important mediator in colitis, and may serve as a therapeutic target in inflammatory bowel disease

    Basal Plasma Levels of Copeptin are Elevated in Inactive Inflammatory Bowel Disease after Bowel Resection.

    No full text
    Evidence of interactions between the enteric nervous system, neuropeptides, and the immune system is growing. The aim of this study was to examine basal plasma levels of a variety of peptide precursors in patients with inflammatory bowel disease (IBD). In two middle-aged cohorts, Malmö Preventive Medicine (n = 5,415) and Malmö Diet and Cost Study (n = 6,103), individuals with the diagnosis of IBD were identified. Medical records were scrutinized. Three controls were matched for each patient. Copeptin, midregional fragments of adrenomedullin, pro-atrial natriuretic peptide, and proenkephalin A, as well as N-terminal protachykinin A and proneurotensin were analyzed in the plasma. Sixty-two IBD patients were identified. The only difference between patients and controls was higher copeptin levels in the patients compared with controls (P = 0.006), with higher copeptin levels in resected than unresected patients (P = 0.020). There was no difference in any precursor levels between Crohn's disease and ulcerative colitis, between different distributions of disease lesions, or between different treatments
    corecore