1,014 research outputs found

    Current trends in chloroplast genome research

    Get PDF
    Chloroplast is an important cellular organelle of autotrophs which has an independent, circular, doublestranded DNA molecule termed as chloroplast genome. The chloroplast DNA (cpDNA) contains essential genes for its maintenance and operation. Several components of the photosystems andproteins involved in biosynthetic pathways are also encoded by the chloroplast genome. Exploring the genetic repository of this organelle is vital due to its conserved nature, small size, persistent gene organization and promising ability for transgenic expression. Therefore, cpDNA sequence information has been instrumental in phylogenetic studies and molecular taxonomy of plants. Chloroplast genome sequencing efforts have being initiated with conventional cloning and chain-termination sequencing technologies. Dedicated databases such as CGDB and GOBASE among others have been established as more and more complete cpDNA sequences are being reported. Presently, elegant molecular biologytechniques including shotgun sequencing, rolling circle amplification (RCA), Amplification, Sequencing and Annotation of Plasteome (ASAP) and Next generation sequencing are being used to accelerate data output. Owing to many fold increase in submission of cpDNA sequences in nucleotide databases, challenges of in-depth data analysis stimulated the emergence of devoted annotation, assembling and phylogenetic software. Recently, reported bioinformatics software for chloroplast genome studiescomprise of DOGMA for annotation, SCAN-SE, ARAGON and PREP suit for RNA analyses and CG viewer for circular map construction/comparative analysis. Faster algorithms for gene-order based phylogenetic reconstruction and bootstrap analysis have attracted the attention of research community. Current trends in sequencing strategies and bioinformatics with reference to chloroplast genomes hold great potential to illuminate more hidden corners of this ancient cell organelle

    Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.We analyzed the genome sequence of an endophytic bacterial strain Pseudomonas putida TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of P. putida TJI51. Out of 6,036 protein coding genes in P. putida TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the P. putida TJI51genome contains several regions, not identified in so far sequenced P. putida genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of P. putida TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of P. putidaTJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches.This research was financially supported by the Higher Education Commission, Islamabad Pakistan

    Burden of disease in chronic rhinosinusitis with nasal polyps

    Get PDF
    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a predominantly type 2 inflammation-mediated disease of the nasal mucosa and paranasal sinuses with an under-recognized clinical, humanistic, and economic burden. Patients with CRSwNP experience a high symptom burden, including nasal congestion, loss of smell, and rhinorrhea, which has a negative impact on physical and mental health-related quality of life, including sleep quality. Existing medical and surgical interventions, including local and systemic corticosteroids and endoscopic sinus surgery, may be associated with recurrence of nasal polyps and associated symptoms and with an increased risk of short- and long-term adverse effects, especially with repeated or long-term use. Because type 2 inflammation is implicated in the pathogenesis of several coexisting diseases, patients with CRSwNP often have comorbid asthma and/or nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. These patients, as well as those with high corticosteroid use and/or sinonasal surgical history, have more severe disease and associated symptom burden and represent a difficult-to-treat population under the existing management paradigm. This article reviews the clinical, humanistic, and economic burden of CRSwNP; it highlights the unmet need for effective and safe CRSwNP therapies that effectively control symptoms and minimize recurrence by targeting the underlying type 2 inflammatory disease pathophysiology

    The interactive impact of straw mulch and biochar application positively enhanced the growth indexes of maize (Zea mays L.) crop

    Get PDF
    A two-year experiment was carried out at Shenyang Agricultural University’s research field area in China to evaluate the impact of the combined application of straw mulch (0 and 8 t ha−1) and biochar (0, 4, 12, and 36 t ha−1) on the morphological traits and grain development of rainfed maize during 2018 and 2019. The results showed that straw mulch and different biochar application rates significantly impacted the maize growth index. Compared to non-biochar-treated soils, the introduction of straw mulch improved plant height, stem diameter, leaf area index (LAI), leaves, stem, root, and crop growth rate (CGR), and dry weight of rainfed maize crop. The highest plant height, stem diameter, LAI, leaves, stem, root growth rate, CGR, and dry weight of rainfed maize crop were reported when soil was treated with a higher rate of biochar (36 t ha−1). Biochar increased grain filling rate while decreasing grain filling duration in rainfed maize crops. Our results indicate that straw mulch and biochar-based soil management strategies can improve the rainfed maize growth with the environmental benefits of global warming mitigation. However, due to the wide range of biochar properties, the interactions between straw mulch and biochar should be given special consideration in the maize cropping system

    Visual Speaker Identification Using Lip and Body Movements

    Get PDF
    Speaker identification has been studied in many fields such as image processing, audio processing, artificial intelligence and speech recognition. Two of these areas are integrated together in order to identify the speaker. This research will focus on two main approaches which are lip movements and body movements. We will work on the two approaches to achieve the speaker identification. The expected outcome of this study will be to identify the speaker in different scenarios, if there is a single speaker or if there is multiple speakers in the video or if the speaker’s lips are not in view

    Predicting Emerging Trends on Social Media by Modeling it as Temporal Bipartite Networks

    Get PDF
    The behavior of peoples' request for a post on online social media is a stochastic process that makes post's ranking highly skewed in nature. We mean peoples interest for a post can grow/decay exponentially or linearly. Considering this nature of the evolutionary peoples' interest, this paper presents a Growth-based Popularity Predictor (GPP) model for predicting and ranking the web-contents. Three different kinds of web-based real datasets namely Movielens, Facebook-wall-post and Digg are used to evaluate the performance of the proposed model. This performance is measured based on four information-retrieval metrics Area Under receiving operating Characteristic (AUC), Novelty, Precision, and Kendal's Tau. The obtained results show that the prediction performance can be further improved if the score is mapped onto a cumulative predicted item's ranking.https://doi.org/10.1109/ACCESS.2020.297613

    Thermal Management of AlGaN-GaN HFETs on Sapphire Using Flip-Chip Bonding with Epoxy Underfill

    Get PDF
    Self-heating imposes the major limitation on the output power of GaN-based HFETs on sapphire or SiC. SiC substrates allow for a simple device thermal management scheme; however, they are about a factor 20-100 higher in cost than sapphire. Sapphire substrates of diameters exceeding 4 in are easily available but the heat removal through the substrate is inefficient due to its low thermal conductivity. The authors demonstrate that the thermal impedance of GaN based HFETs over sapphire substrates can be significantly reduced by implementing flip-chip bonding with thermal conductive epoxy,underfill. They also show that in sapphire-based flip-chip mounted devices the heat spread from the active region under the gate along the GaN buffer and the substrate is the key contributor to the overall thermal impedance
    corecore