119 research outputs found
Extractive Separation of Rhenium by Complexation with Hexamine
88-90Rhenium(VII) has been separated from molybdenum(VI) and other metal ions by complexation with hexamine in hydrochloric acid solution in the presence of a reductant, extracting the complex thus formed into tribenzylamine-chloroform. The method is free from the interference from Mo(VI), W(VI), U(VI), Cr(III, VI), V(V), Fe(II), Co(II), Ni(II), Mn(II) and Pd(II)
The Burkholderia Genome Database: facilitating flexible queries and comparative analyses
Summary: As the genome sequences of multiple strains of a given bacterial species are obtained, more generalized bacterial genome databases may be complemented by databases that are focused on providing more information geared for a distinct bacterial phylogenetic group and its associated research community. The Burkholderia Genome Database represents a model for such a database, providing a powerful, user-friendly search and comparative analysis interface that contains features not found in other genome databases. It contains continually updated, curated and tracked information about Burkholderia cepacia complex genome annotations, plus other Burkholderia species genomes for comparison, providing a high-quality resource for its targeted cystic fibrosis research community
Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes
Pseudomonas aeruginosa is a well-studied opportunistic pathogen that is particularly known for its intrinsic antimicrobial resistance, diverse metabolic capacity, and its ability to cause life threatening infections in cystic fibrosis patients. The Pseudomonas Genome Database (http://www.pseudomonas.com) was originally developed as a resource for peer-reviewed, continually updated annotation for the Pseudomonas aeruginosa PAO1 reference strain genome. In order to facilitate cross-strain and cross-species genome comparisons with other Pseudomonas species of importance, we have now expanded the database capabilities to include all Pseudomonas species, and have developed or incorporated methods to facilitate high quality comparative genomics. The database contains robust assessment of orthologs, a novel ortholog clustering method, and incorporates five views of the data at the sequence and annotation levels (Gbrowse, Mauve and custom views) to facilitate genome comparisons. A choice of simple and more flexible user-friendly Boolean search features allows researchers to search and compare annotations or sequences within or between genomes. Other features include more accurate protein subcellular localization predictions and a user-friendly, Boolean searchable log file of updates for the reference strain PAO1. This database aims to continue to provide a high quality, annotated genome resource for the research community and is available under an open source license
Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members.
Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = â„ 0.34, p =â <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region
Hepatitis B and Renal Disease
Glomerulonephritis is an important extrahepatic manifestation of chronic hepatitis B virus (HBV) infection. The uncommon occurrence, variability in renal histopathology, and heterogeneity in clinical course present challenges in clinical studies and have resulted in a relative paucity of data and uncertainty with regard to the optimal management of HBV-related glomerular diseases. The advent of nucleos(t)ide analogue medications that effectively suppress HBV replication has markedly altered the clinical outcomes of kidney transplant recipients with HBV infection, but the emergence of drug resistance is an escalating problem. This article reviews the recent knowledge of the pathogenesis and treatment of HBV-related membranous nephropathy, and discusses the management of hepatitis B in kidney transplant recipients, which is continuously evolving
IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation
Graft-versus-host disease (GvHD) remains a major cause of transplant-related mortality. Interleukin-2 (IL-2) plus sirolimus (SIR) synergistically reduces acute GvHD in rodents and promotes regulatory T cells. This phase II trial tested the hypothesis that IL-2 would facilitate STAT5 phosphorylation in donor T cells, expand regulatory T cells, and ameliorate GvHD. Between 16th April 2014 and 19th December 2015, 20 patients received IL-2 (200,000 IU/m2 thrice weekly, days 0 to +90) with SIR (5â14 ng/mL) and tacrolimus (TAC) (3â7 ng/mL) after HLA-matched related or unrelated allogeneic hematopoietic cell transplantation (HCT). The study was designed to capture an increase in regulatory T cells from 16.0% to more than 23.2% at day +30. IL-2/SIR/TAC significantly increased regulatory T cells at day +30 compared to our published data with SIR/TAC (23.8% vs. 16.0%, P=0.0016; 0.052 k/uL vs. 0.037 k/uL, P=0.0163), achieving the primary study end point. However, adding IL-2 to SIR/TAC led to a fall in regulatory T cells by day +90 and did not reduce acute or chronic GvHD. Patients who discontinued IL-2 before day +100 showed a suggested trend toward less grade II-IV acute GvHD (16.7% vs. 50%, P=0.1475). We surmise that the reported accumulation of IL-2 receptors in circulation over time may neutralize IL-2, lead to progressive loss of regulatory T cells, and offset its clinical efficacy. The amount of phospho-STAT3+ CD4+ T cells correlated with donor T-cell activation and acute GvHD incidence despite early T-cell STAT5 phosphorylation by IL-2. Optimizing IL-2 dosing and overcoming cytokine sequestration by soluble IL-2 receptor may sustain lasting regulatory T cells after transplantation. However, an approach to target STAT3 is needed to enhance GvHD prevention. (clinicaltrials.gov identifier: 01927120)
In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation
T-helper 1 and T-helper 17 lymphocytes mediate acute graft-versus-host disease (GvHD). Interleukin 12 is critical for T-helper 1 differentiation and interleukin 23 for T-helper 17 maintenance. Interleukin 12 and 23 are heterodimeric cytokines that share the p40 subunit (IL-12/IL-23p40). In a randomized, blinded, placebo-controlled trial, we examined the biological impact and clinical outcomes following IL-12/IL-23p40 neutralization using ustekinumab. Thirty patients received peripheral blood mobilized hematopoietic cell transplantation (HCT) from HLA-matched sibling or unrelated donors, received sirolimus plus tacrolimus as GvHD prophylaxis, and were randomized to ustekinumab versus placebo with 1:1 allocation after stratification by donor type. The primary end point of the trial was the mean percentage (%) T-regulatory (Treg) cells on day 30 post HCT. Ustekinumab was delivered by subcutaneous injection on day â1 and day +20 after transplantation. On day 30 post transplant, no significant difference in % Treg was observed. Ustekinumab suppressed serum IL-12/IL-23p40 levels. Host-reactive donor alloresponse at days 30 and 90 after transplantation was polarized with significant reduction in IL-17 and IFN-α production and increase in IL-4. No toxicity attributed to ustekinumab was observed. Overall survival and National Institute of Health moderate/severe chronic GvHD-free, relapse-free survival were significantly improved among ustekinumab-treated patients. No significant improvements were observed in acute or chronic GvHD, relapse, or non-relapse mortality. These data provide first evidence that IL-12/IL-23p40 neutralization can polarize donor anti-host alloresponse in vivo and provide initial clinical efficacy evidence to be tested in subsequent trials. (Trial registered at clinicaltrials.gov identifier: 01713400.
Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions
Background Bile duct injury (BDI) is a dreaded complication of cholecystectomy, often caused by misinterpretation of biliary anatomy. To prevent BDI, techniques have been developed for intraoperative assessment of bile duct anatomy. This article reviews the evidence for the different techniques and discusses their strengths and weaknesses in terms of efficacy, ease, and cost-effectiveness. Method PubMed was searched from January 1980 through December 2009 for articles concerning bile duct visualization techniques for prevention of BDI during laparoscopic cholecystectomy. Results Nine techniques were identified. The critical-view-of-safety approach, indirectly establishing biliary anatomy, is accepted by most guidelines and commentaries as the surgical technique of choice to minimize BDI risk. Intraoperative cholangiography is associated with lower BDI risk (OR 0.67, CI 0.61-0.75). However, it incurs extra costs, prolongs the operative procedure, and may be experienced as cumbersome. An established reliable alternative is laparoscopic ultrasound, but its longer learning curve limits widespread implementation. Easier to perform are cholecystocholangiography and dye cholangiography, but these yield poor-quality images. Light cholangiography, requiring retrograde insertion of an optical fiber into the common bile duct, is too unwieldy for routine use. Experimental techniques are passive infrared cholangiography, hyperspectral cholangiography, and near-infrared fluorescence cholangiography. The latter two are performed noninvasively and provide real-time images. Quantitative data in patients are necessary to further evaluate these techniques. Conclusions The critical-view-of-safety approach should be used during laparoscopic cholecystectomy. Intraoperative cholangiography or laparoscopic ultrasound is recommended to be performed routinely. Hyperspectral cholangiography and near-infrared fluorescence cholangiography are promising novel techniques to prevent BDI and thus increase patient safety
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particlesâ
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
- âŠ