122 research outputs found

    Wall slope effects on the vertical pull-out capacity of tapered suction caissons

    Get PDF
    AbstractSuction caissons offer certain advantages over other underwater foundation systems by virtue of large bearing capacity, ease of installation, and efficiency. They are typically built with upright walls. The behaviour of upright suction caissons in regard to their applications, installation, load-bearing, etc. has already been investigated by a number of researchers. However, the performance of tapered suction caissons has not been formerly studied. This paper addresses the pull-out capacity of tapered suction caissons under vertical pull-out loads. A numerical approach was used. The finite element model was first calibrated against available test results on upright suction caissons and then used to simulate the pull-out of tapered caissons. It is admitted, however, that further validation of the model against experimental results on tapered suction caissons will increase the acceptability of the results. It was observed that positive wall slopes may noticeably improve the pull-out capacity. A change from local to global failure modes was postulated as the main reason for this improved resistance. With negative wall slopes, however, the pull-out capacity slightly decreased. In addition, effects from the caisson wall slope were investigated for a number of caisson geometries, drainage conditions and soil properties

    Probiotic-based vaccines may provide effective protection against covid-19 acute respiratory disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, the causative agent of COVID-19, now represents the sixth Public Health Emergency of International Concern (PHEIC)�as declared by the World Health Organization (WHO) since 2009. Considering that SARS-CoV-2 is mainly transmitted via the mucosal route, a therapy administered by this same route may represent a desirable approach to fight SARS-CoV-2 infection. It is now widely accepted that genetically modified microorganisms, including probiotics, represent attractive vehicles for oral or nasal mucosal delivery of therapeutic molecules. Previous studies have shown that the mucosal administration of therapeutic molecules is able to induce an immune response mediated by specific serum IgG and mucosal IgA antibodies along with mucosal cell-mediated immune responses, which effectively concur to neutralize and eradicate infections. Therefore, advances in the modulation of mucosal immune responses, and in particular the use of probiotics as live delivery vectors, may encourage prospective studies to assess the effectiveness of genetically modified probiotics for SARS-CoV-2 infection. Emerging trends in the ever-progressing field of vaccine development re-emphasize the contribution of adjuvants, along with optimization of codon usage (when designing a synthetic gene), expression level, and inoculation dose to elicit specific and potent protective immune re-sponses. In this review, we will highlight the existing pre-clinical and clinical information on the use of genetically modified microorganisms in control strategies against respiratory and non-respiratory viruses. In addition, we will discuss some controversial aspects of the use of genetically modified probiotics in modulating the cross-talk between mucosal delivery of therapeutics and immune system modulation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report

    Get PDF
    BACKGROUND: Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. CASE PRESENTATION: A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. CONCLUSION: Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately

    ATRT–SHH comprises three molecular subgroups with characteristic clinical and histopathological features and prognostic significance

    Get PDF
    Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT–TYR, ATRT–MYC and ATRT–SHH. ATRT–SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT–SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT–SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT–SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT–SHH has prognostic relevance and might aid to stratify patients within future clinical trials. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00401-022-02424-5

    High-Risk and Low-Risk Human Papillomavirus in Esophageal Squamous Cell Carcinoma at Mazandaran, Northern Iran

    Get PDF
    Cancers are the second most common cause of nonaccidental deaths in Iran, following cardiovascular deaths. Mazandaran, near the Caspian Littoral at north of Iran have identified as a several-high incidence area for Esophageal Squamous Cell Carcinoma (ESCC) in the world. Several associated risk factors, such as dietary and cultural habits, infectious agents, nutritional deficiencies, too much use of tobacco and alcohol and infection to certain DNA tumor viruses (HPVs), including environmental and genetic factors are attributed to this disease. To explore this issue, we analyzed HPV DNA prevalence and HPV types together in relation to tumor sites a high-incidence population. Archived tissue blocks from 46, 69 and 62 upper, middle and lower third of esophagus, respectively from ESCC patients were evaluated for the presence of HPV DNA by PCR using the degenerate HPV L1 consensus primer pairs MY09/MY11. The positive specimens were evaluated by Real-time PCR to determine HPV genotypes. From the 49 HPV positive cases, of ESCC patients, 5 (23.1%), 11 (55 %) and 9 (56.3 %) of upper, middle and lower third of ESCC specimens, respectively were positive by at least one high and one low-risk HPV genotypes. In general, HPV45 and HPV11 were the most common high- risk and low-risk HPV genotypes in HPV L1 positive cases, respectively, followed by HPV6, HPV52 and HPV39. Therefore, the high prevalence of HPV DNA in different anatomical sites of ESCC patients from the Mazandaran region in North of Iran provides more evidence for a role of HPV in this cancer

    Diffuse Glioneuronal tumour with Oligodendroglioma‐like features and Nuclear Clusters (DGONC) – a molecularly‐defined glioneuronal CNS tumour class displaying recurrent monosomy 14

    Get PDF
    Aims: DNA methylation-based central nervous system (CNS) tumour classification has identified numerous molecularly distinct tumour types, and clinically relevant subgroups among known CNS tumour entities that were previously thought to represent homogeneous diseases. Our study aimed at characterizing a novel, molecularly defined variant of glioneuronal CNS tumour. Patients and methods: DNA methylation profiling was performed using the Infinium MethylationEPIC or 450 k BeadChip arrays (Illumina) and analysed using the 'conumee' package in R computing environment. Additional gene panel sequencing was also performed. Tumour samples were collected at the German Cancer Research Centre (DKFZ) and provided by multinational collaborators. Histological sections were also collected and independently reviewed. Results: Genome-wide DNA methylation data from >25 000 CNS tumours were screened for clusters separated from established DNA methylation classes, revealing a novel group comprising 31 tumours, mainly found in paediatric patients. This DNA methylation-defined variant of low-grade CNS tumours with glioneuronal differentiation displays recurrent monosomy 14, nuclear clusters within a morphology that is otherwise reminiscent of oligodendroglioma and other established entities with clear cell histology, and a lack of genetic alterations commonly observed in other (paediatric) glioneuronal entities. Conclusions: DNA methylation-based tumour classification is an objective method of assessing tumour origins, which may aid in diagnosis, especially for atypical cases. With increasing sample size, methylation analysis allows for the identification of rare, putative new tumour entities, which are currently not recognized by the WHO classification. Our study revealed the existence of a DNA methylation-defined class of low-grade glioneuronal tumours with recurrent monosomy 14, oligodendroglioma-like features and nuclear clusters

    Semaphorin 6A Improves Functional Recovery in Conjunction with Motor Training after Cerebral Ischemia

    Get PDF
    Background: We have previously identified Semaphorin 6a (Sema6A) as an upregulated gene product in a gene expression screen in cortical ischemia [1]. Semaphorin 6a was regulated during the recovery phase following ischemia in the cortex. Semaphorin 6a is a member of the superfamily of semaphorins involved in axon guidance and other functions. We hypothesized that the upregulation indicates a crucial role of this molecule in post-stroke rewiring of the brain. Here we have tested this hypothesis by overexpressing semaphorin 6a in the cortex by microinjection of a modified AAV2-virus. A circumscribed cortical infarct was induced, and the recovery of rats monitored for up to 4 weeks using a well-established test battery (accelerated rotarod training paradigm, cylinder test, adhesive tape removal). We observed a significant improvement in post-ischemic recovery of animals injected with the semaphorin 6a virus versus animals treated with a control virus. We conclude that semaphorin 6a overexpressed in the cortex enhances recovery after cerebral ischemia

    Identification of Ischemic Regions in a Rat Model of Stroke

    Get PDF
    Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia.Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed.TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study

    Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups

    Get PDF
    BACKGROUND: Choroid plexus tumors are intraventricular neoplasms derived from the choroid plexus epithelium. A better knowledge of molecular factors involved in choroid plexus tumor biology may aid in identifying patients at risk for recurrence. METHODS: Methylation profiles were examined in 29 choroid plexus papillomas (CPPs, WHO grade I), 32 atypical choroid plexus papillomas (aCPPs, WHO grade II), and 31 choroid plexus carcinomas (CPCs, WHO grade III) by Illumina Infinium HumanMethylation450 Bead Chip Array. RESULTS: Unsupervised hierarchical clustering identified 3 subgroups: methylation cluster 1 (pediatric CPP and aCPP of mainly supratentorial location), methylation cluster 2 (adult CPP and aCPP of mainly infratentorial location), and methylation cluster 3 (pediatric CPP, aCPP, and CPC of supratentorial location). In methylation cluster 3, progression-free survival (PFS) accounted for a mean of 72 months (CI, 55-89 mo), whereas only 1 of 42 tumors of methylation clusters 1 and 2 progressed (P< .001). On stratification of outcome data according to WHO grade, all CPCs clustered within cluster 3 and were associated with shorter overall survival (mean, 105 mo [CI, 81-128 mo]) and PFS (mean, 55 mo [CI, 36-73 mo]). The aCPP of methylation cluster 3 also progressed frequently (mean, 69 mo [CI, 44-93 mo]), whereas no tumor progression was observed in aCPP of methylation clusters 1 and 2 (P< .05). Only 1 of 29 CPPs recurred. CONCLUSIONS: Methylation profiling of choroid plexus tumors reveals 3 distinct subgroups (ie, pediatric low-risk choroid plexus tumors [cluster 1], adult low-risk choroid plexus tumors [cluster 2], and pediatric high-risk choroid plexus tumors [cluster 3]) and may provide useful prognostic information in addition to histopathology

    Amino acid substitutions within HLA-B*27- restricted T cell epitopes prevent recognition by hepatitis delta virus-specific CD8+ T cells

    Get PDF
    Virus-specific CD8 T cell response seems to play a significant role in the outcome of hepatitis delta virus (HDV) infection. However, the HDV-specific T cell epitope repertoire and mechanisms of CD8 T cell failure in HDV infection have been poorly characterized. We therefore aimed to characterize HDV-specific CD8 T cell epitopes and the impacts of viral mutations on immune escape. In this study, we predicted peptide epitopes binding the most frequent human leukocyte antigen (HLA) types and assessed their HLA binding capacities. These epitopes were characterized in HDV-infected patients by intracellular gamma interferon (IFN-γ) staining. Sequence analysis of large hepatitis delta antigen (L-HDAg) and HLA typing were performed in 104 patients. The impacts of substitutions within epitopes on the CD8 T cell response were evaluated experimentally and by in silico studies. We identified two HLA-B*27-restricted CD8 T cell epitopes within L-HDAg. These novel epitopes are located in a relatively conserved region of L-HDAg. However, we detected molecular footprints within the epitopes in HLA-B*27-positive patients with chronic HDV infections. The variant peptides were not cross-recognized in HLA-B*27-positive patients with resolved HDV infections, indicating that the substitutions represent viral escape mutations. Molecular modeling of HLA-B*27 complexes with the L-HDAg epitope and its potential viral escape mutations indicated that the structural and electrostatic properties of the bound peptides differ considerably at the T cell receptor interface, which provides a possible molecular explanation for the escape mechanism. This viral escape from the HLA-B*27-restricted CD8 T cell response correlates with a chronic outcome of hepatitis D infection. T cell failure resulting from immune escape may contribute to the high chronicity rate in HDV infection. © 2018 American Society for Microbiology
    corecore