141 research outputs found
Genetic Polymorphisms and Drug Susceptibility in Four Isolates of Leishmania tropica Obtained from Canadian Soldiers Returning from Afghanistan
Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease transmitted by the bite of sandflies, resulting in sores on the skin. No vaccines are available, and treatment relies on chemotherapy. CL has been frequently diagnosed in military personnel deployed to Afghanistan and returning from duty. The parasites isolated from Canadian soldiers were characterized by pulsed field gels and by sequencing conserved genes and were identified as Leishmania tropica. In contrast to other Leishmania species, high allelic polymorphisms were observed at several genetic loci for the L. tropica isolates that were characterized. In vitro susceptibility testing in macrophages showed that all isolates, despite their genetic heterogeneity, were sensitive to most antileishmanial drugs (antimonials, miltefosine, amphotericin B, paromomycin) but were insensitive to fluconazole. This study suggests a number of therapeutic regimens for treating cutaneous leishmaniasis caused by L. tropica among patients and soldiers returning from Afghanistan. Canadian soldiers from this study were successfully treated with miltefosine
Dynamics of Parasite Clearance in Cutaneous Leishmaniasis Patients Treated with Miltefosine
Parasite loads were quantified in repeated skin biopsies from lesions of 2 patients with Old-World cutaneous leishmaniasis (CL) caused by Leishmania major and L. infantum during and after treatment with miltefosine. Miltefosine induced a rapid therapeutic effect on both infections with an initial decline of parasites of ∼1 log/week for the L. major infection. These observations illustrate the usability of quantifying parasite loads in skin lesions as a pharmacodynamic measure and quantitative descriptor of drug effect for CL supporting clinical assessment
Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning
Cognitive Flexibility Predicts PTSD Symptoms: Observational and Interventional Studies
Introduction: Post-Traumatic Stress Disorder (PTSD) is a prevalent, severe and tenacious psychopathological consequence of traumatic events. Neurobehavioral mechanisms underlying PTSD pathogenesis have been identified, and may serve as risk-resilience factors during the early aftermath of trauma exposure. Longitudinally documenting the neurobehavioral dimensions of early responses to trauma may help characterize survivors at risk and inform mechanism-based interventions. We present two independent longitudinal studies that repeatedly probed clinical symptoms and neurocognitive domains in recent trauma survivors. We hypothesized that better neurocognitive functioning shortly after trauma will be associated with less severe PTSD symptoms a year later, and that an early neurocognitive intervention will improve cognitive functioning and reduce PTSD symptoms.Methods: Participants in both studies were adult survivors of traumatic events admitted to two general hospitals’ emergency departments (EDs) in Israel. The studies used identical clinical and neurocognitive tools, which included assessment of PTSD symptoms and diagnosis, and a battery of neurocognitive tests. The first study evaluated 181 trauma-exposed individuals one-, six-, and 14 months following trauma exposure. The second study evaluated 97 trauma survivors 1 month after trauma exposure, randomly allocated to 30 days of web-based neurocognitive intervention (n = 50) or control tasks (n = 47), and re-evaluated all subjects three- and 6 months after trauma exposure.Results: In the first study, individuals with better cognitive flexibility at 1 month post-trauma showed significantly less severe PTSD symptoms after 13 months (p = 0.002). In the second study, the neurocognitive training group showed more improvement in cognitive flexibility post-intervention (p = 0.019), and lower PTSD symptoms 6 months post-trauma (p = 0.017), compared with controls. Intervention- induced improvement in cognitive flexibility positively correlated with clinical improvement (p = 0.002).Discussion: Cognitive flexibility, shortly after trauma exposure, emerged as a significant predictor of PTSD symptom severity. It was also ameliorated by a neurocognitive intervention and associated with a better treatment outcome. These findings support further research into the implementation of mechanism-driven neurocognitive preventive interventions for PTSD
Seroprevalence of Pandemic (H1N1) 2009 in Pregnant Women in China: An Observational Study
BACKGROUND: We investigated the seropositive rates and persistence of antibody against pandemic (H1N1) 2009 virus (pH1N1) in pregnant women and voluntary blood donors after the second wave of the pandemic in Nanjing, China. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples of unvaccinated pregnant women (n = 720) and voluntary blood donors (n = 320) were collected after the second wave of 2009 pandemic in Nanjing. All samples were tested against pH1N1 strain (A/California/7/2009) with hemagglutination inhibition assay. A significant decline in seropositive rates, from above 50% to about 20%, was observed in pregnant women and voluntary blood donors fifteen weeks after the second wave of the pandemic. A quarter of the samples were tested against a seasonal H1N1 strain (A/Brisbane/59/2007). The antibody titers against pH1N1 strain were found to correlate positively with those against seasonal H1N1 strain. The correlation was modest but statistically significant. CONCLUSIONS AND SIGNIFICANCE: The high seropositive rates in both pregnant women and voluntary blood donors suggested that the pH1N1 virus had widely spread in these two populations. Immunity derived from natural infection seemed not to be persistent well
Efflux Pump, the Masked Side of ß-Lactam Resistance in Klebsiella pneumoniae Clinical Isolates
International audienceBACKGROUND: Beta-lactamase production and porin decrease are the well-recognized mechanisms of acquired beta-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX) and susceptible to amoxicillin+clavulanic acid in our hospital. Assessing the role of efflux pumps in this beta-lactam phenotype was the aim of this study. METHODOLOGY/FINDINGS: MICs of 9 beta-lactams, including cloxacillin (CLX), and other antibiotic families were tested alone and with an efflux pump inhibitor (EPI), then with both CLX (subinhibitory concentrations) and EPI against 11 unique bacteremia K. pneumoniae isolates displaying the unusual phenotype, and 2 ATCC strains. CLX and EPI-dose dependent effects were studied on 4 representatives strains. CLX MICs significantly decreased when tested with EPI. A similar phenomenon was observed with piperacillin+tazobactam whereas MICs of the other beta-lactams significantly decreased only in the presence of both EPI and CLX. Thus, FOX MICs decreased 128 fold in the K. pneumoniae isolates but also 16 fold in ATCC strain. Restoration of FOX activity was CLX dose-dependent suggesting a competitive relationship between CLX and the other beta-lactams with regard to their efflux. For chloramphenicol, erythromycin and nalidixic acid whose resistance was also due to efflux, adding CLX to EPI did not increase their activity suggesting differences between the efflux process of these molecules and that of beta-lactams. CONCLUSION: This is the first study demonstrating that efflux mechanism plays a key role in the beta-lactam susceptibility of clinical isolates of K. pneumoniae. Such data clearly evidence that the involvement of efflux pumps in beta-lactam resistance is specially underestimated in clinical isolates
Bacillus cereus Spores Release Alanine that Synergizes with Inosine to Promote Germination
spores germinate in the presence of a single germinant, inosine, yet with a significant lag period. spores. spores appear to have developed a unique quorum-sensing feedback mechanism to monitor spore density and to coordinate germination
Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group
<p>Abstract</p> <p>Background</p> <p>The <it>Bacillus cereus </it><it>sensu lato </it>group consists of six species (<it>B. anthracis</it>, <it>B. cereus</it>, <it>B. mycoides</it>, <it>B. pseudomycoides</it>, <it>B. thuringiensis</it>, and <it>B. weihenstephanensis</it>). While classical microbial taxonomy proposed these organisms as distinct species, newer molecular phylogenies and comparative genome sequencing suggests that these organisms should be classified as a single species (thus, we will refer to these organisms collectively as the <it>Bc </it>species-group). How do we account for the underlying similarity of these phenotypically diverse microbes? It has been established for some time that the most rapidly evolving and evolutionarily flexible portions of the bacterial genome are regulatory sequences and transcriptional networks. Other studies have suggested that the sigma factor gene family of these organisms has diverged and expanded significantly relative to their ancestors; sigma factors are those portions of the bacterial transcriptional apparatus that control RNA polymerase recognition for promoter selection. Thus, examining sigma factor divergence in these organisms would concurrently examine both regulatory sequences and transcriptional networks important for divergence. We began this examination by comparison to the sigma factor gene set of <it>B. subtilis</it>.</p> <p>Results</p> <p>Phylogenetic analysis of the <it>Bc </it>species-group utilizing 157 single-copy genes of the family <it>Bacillaceae </it>suggests that several taxonomic revisions of the genus <it>Bacillus </it>should be considered. Within the <it>Bc </it>species-group there is little indication that the currently recognized species form related sub-groupings, suggesting that they are members of the same species. The sigma factor gene family encoded by the <it>Bc </it>species-group appears to be the result of a dynamic gene-duplication and gene-loss process that in previous analyses underestimated the true heterogeneity of the sigma factor content in the <it>Bc </it>species-group.</p> <p>Conclusions</p> <p>Expansion of the sigma factor gene family appears to have preferentially occurred within the extracytoplasmic function (ECF) sigma factor genes, while the primary alternative (PA) sigma factor genes are, in general, highly conserved with those found in <it>B. subtilis</it>. Divergence of the sigma-controlled transcriptional regulons among various members of the <it>Bc </it>species-group likely has a major role in explaining the diversity of phenotypic characteristics seen in members of the <it>Bc </it>species-group.</p
Characterization in vitro and in vivo of a pandemic H1N1 influenza virus from a fatal case
Pandemic 2009 H1N1 (pH1N1) influenza viruses caused mild symptoms in most infected patients. However, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. Here we tested whether influenza strains displaying differential virulence could be present among circulating pH1N1 viruses. The biological properties and the genotype of viruses isolated from a patient showing mild disease (M) or from a fatal case (F), both without known co-morbid conditions were compared in vitro and in vivo. The F virus presented faster growth kinetics and stronger induction of cytokines than M virus in human alveolar lung epithelial cells. In the murine model in vivo, the F virus showed a stronger morbidity and mortality than M virus. Remarkably, a higher proportion of mice presenting infectious virus in the hearts, was found in F virus-infected animals. Altogether, the data indicate that strains of pH1N1 virus with enhanced pathogenicity circulated during the 2009 pandemic. In addition, examination of chemokine receptor 5 (CCR5) genotype, recently reported as involved in severe influenza virus disease, revealed that the F virus-infected patient was homozygous for the deleted form of CCR5 receptor (CCR5Δ32).Funding Statement: This work was supported by Instituto de Salud Carlos III (Programa especial de investigación sobre la gripe pándemica GR09/0023, GR09/0040, GR09/0039) and Ciber de Enfermedades Respiratorias. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S
- …